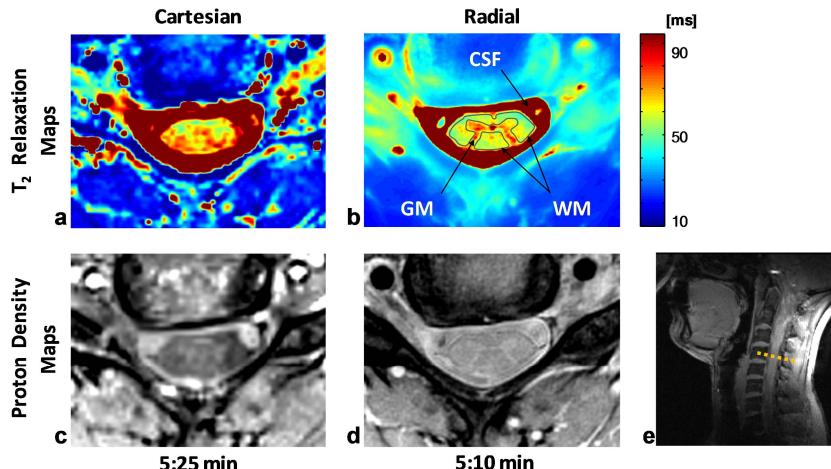


Accelerated and motion-robust *in vivo* T_2 mapping from radially undersampled data using Bloch-simulation-based iterative reconstruction

Noam Ben-Eliezer^{1,2}, Daniel K Sodickson^{1,2}, Timothy M Shepherd^{1,2}, Graham C Wiggins^{1,2}, and Kai Tobias Block^{1,2}

¹Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, United States, ²Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, United States


Target audience Clinicians interested in rapid quantitative T_2 mapping; Researchers interested in advanced motion robust image-reconstruction.

Purpose Quantitative mapping of T_2 relaxation time can be used to detect pathological tissue changes in various clinical applications including stroke¹, multiple sclerosis², cardiac imaging³, cancer detection⁴, and musculoskeletal imaging⁵. Still, routine use of traditional single spin-echo (SSE) protocols is impractical due to their long scan times, while faster, multi-SE (MSE) protocols, are inherently biased by stimulated echoes, non-rectangular slice profiles, and transmit field (B_1^+) inhomogeneities. Recently a new technique – the echo-modulation curve (EMC) algorithm⁶ – was introduced, which is able to overcome the typical penalties of MSE protocols, via precise Bloch simulation of the MSE pulse-sequence scheme. The approach is furthermore capable of producing T_2 maps in a fashion that is invariant to the scanner, protocol-implementation, or parameter set⁷.

In this work we apply the numerical EMC model to radially sampled MSE offering additional benefits such as high acquisition efficiency, robustness to physiological motion, and ability to scan partial field-of-views. Moreover, due to its inherent high incoherence, the radial acquisition was accelerated by employing a multiparametric model-based reconstruction technique⁸. The resulting framework offers a high-resolution, accurate, and motion robust mapping of both T_2 and proton density (PD) values in clinically feasible scan times.

Methods **EMC algorithm:** Bloch simulations of the prospective MSE protocol were performed using exact sequence parameters, RF, and gradient waveforms. These were repeated for a range of T_2 and B_1^+ values ($T_2=1\text{...}1000\text{ms}$, $B_1^+ = 50\text{...}130\%$ deviation from nominal value), producing a database of EMCs, each associated with a unique $[B_1^+, T_2]$ value pair. **Data were acquired** on a whole-body 3T scanner (Siemens TimTrio) for **1**) an MnCl₂ phantom, **2**) *in vivo* brain (N=30), and **3**) *in vivo* spinal cord (N=5), using golden-angle radial MSE, Cartesian MSE and SSE protocols. Cardiac triggering ($T_{\text{delay}}=10\text{ ms}$) was used in the spinal cord scans. Acquisition parameters were: **{Radial MSE:** TR=2000ms, slice=3mm, echo-spacing=12ms, N_{echoes}=19, spokes per frame=100, res=1.1x1.1mm², T_{acq}=3:10min}, **{Cartesian MSE:** TR=2000ms, slice=3mm, echo-spacing=10ms, N_{echoes}=22, res=1.1x1.1mm², T_{acq}=3:10min (2x GRAPPA acceleration)} **{SE:** TR/TE=2000/15ms, slice=3mm, echo-spacing=15ms, N_{echoes}=6, res=1.7x1.7mm², T_{acq}=22min}. **Reconstruction:** **Radial MSE:** Joint three-parameter $[B_1^+, T_2, \text{PD}]$ fit was performed by integrating the EMC database into the signal model of an iterative non-linear conjugate-gradient reconstruction algorithm⁹. **Cartesian MSE:** T_2 maps were generated via pixel-by-pixel EMC fitting of the DICOM time-series produced by the Cartesian MSE. **Cartesian SSE:** T_2 maps were generated via conventional pixel-by-pixel fitting of the DICOM time-series to an exponential $S(t)=S_0 \exp(-t/T_2)$ relaxation model.

Results **MnCl₂ phantom:** excellent correlation was found between radial MSE and reference Cartesian data (p-value < 1e-9), for T_2 values ranging from 9ms to 120ms and refocusing flip-angles of [90°...180°]. **Brain T_2 maps** exhibited high correlation between radial and Cartesian MSE, with the former affording higher spatial definition per scan time. **Spinal cord:** Enclosed Figure shows axial T_2 and PD maps of the spinal cord *in vivo*, obtained using: **(a,c)** Cartesian MSE fitted using the EMC algorithm. **(b-d)** Radially undersampled MSE processed using an EMC-integrated model-based reconstruction. **(e)** Sagittal view of a fast spin-echo reference image showing the slice location. A clear advantage is seen for the radial data, allowing segmentation of the CSF and gray/white matter tissues.

Discussion The EMC algorithm offers fast and accurate extraction of the true sample T_2 values along with other parametric maps such as PD and B_1^+ in a fashion that is scanner and sequence invariant. This stability across scanners, protocol implementations and parameter values, is of further value for accurate T_2 quantification in longitudinal and multi-center studies with minimal inter-scan variability. The synergetic combination with radial sampling offers improved immunity to motion and allows acquisition at arbitrary spatial resolutions owing to the image-folding free nature of radial sampling. The radial EMC based model can be extended to include other contrasts such as T_1 , diffusion and T_2^* , multi-compartment T_2 distributions, and various pulse-sequence designs.

References

- [1] Siemonsen S et al. *Stroke* 2009; 40(5): 1612-16. [2] Lund H et al. *Acta Neurol Scand* 2012; 125(5): 338-44. [3] Eitel I et al. *J Cardiovasc Magn Reson* 2011; 13(1): 13. [4] Liu W et al. *MRM* 2011; 65(5): 1400-6. [5] Pan J et al. *Radiology* 2011; 261(2): 507-15. [6] Ben-Eliezer N et al. *MRM* 2014, doi: 10.1002/mrm.25156. [7] Ben-Eliezer N et al. ISMRM 2015 (submitted). [8] Block K et al. *IEEE Trans Med Imaging* 2009; 28(11): 1759-69. [9] Hager WW et al. *SIAM Journal on Optimization* 2005; 16: 170-192. **Financial support:** Helen and Martin Kimmel Award for Innovative Investigation. NIH Grant R01 EB000447.