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Target Audience Researchers and clinicians interested in body/liver imaging and disease, with a particular interest in diffusion imaging. 
Purpose The intravoxel incoherent motion (IVIM) technique has been used to model the non-monoexponential signal decay in the liver(1,2). This 
technique allows for the extraction of perfusion information from the diffusion-weighted imaging (DWI) signal and includes a faster component thought to 
represent the microcirculation of blood through capillaries. The IVIM model is biexponential (i.e. a two component model) and includes terms for the 
fraction of received signal attributed to moving blood (perfusion fraction, fp), the diffusion of the moving blood (pseudodiffusion, Dp), and the diffusion 
excluding contributions from moving blood (true molecular diffusion, Dt), (Equation 1). However, the best model for fitting the IVIM signal is still unknown. 
Previous studies have used several different models and achieved different results. The full model involves using a least squares technique to fit the full 
range of b-value DWI data to a biexponential equation, with the true and pseudo-diffusion components weighted by fractional perfusion(3). The 
segmented technique involves using only high b-values to calculate a perfusion-insensitive diffusion parameter and fractional perfusion(1,2). Finally, the 
Bayesian approach uses the least squares data from the full model as a prior distribution and a shrinkage prior model to reduce parameter uncertainty(4). 
This study compared the three models in terms of parameter value and repeatability in normal liver parenchyma. 
Methods Eight subjects with no 
known history of abdominal disease 
participated in this study. Each 
subject underwent two consecutive 
respiratory-triggered spin-echo EPI 
DWI scans on a GE 1.5T scanner. 
The TR varied based on subjects’ 
breathing and ranged from 6-9s. 
Additional parameters were: FOV=36-
50cm, TE=63.4ms, 3 orthogonal 
diffusion directions acquired simultaneously (3in1), b = 
(0, 10, 25, 50, 100, 150, 200, 400, 800) s/mm2, slice 
thickness = 8 skip 2mm, and a matrix size of 192x256. 
The IVIM parameters were calculated using three 
different fitting models. For the full model, Equation 1 
was fit using the full range of b-values. The segmented 
approach used methods previously published(1,2). This 
technique takes advantage of the fact that, since Dp >> 
Dt, its effect can be neglected when b > 200 s/mm2. 
Thus, Dt can be estimated by linearly fitting the DWI data 
obtained at b>200 s/mm2 with the natural log of Equation 
2, and fp by evaluating Equation 3. Pseudodiffusion can 
then be calculated by fitting Equation 1, with fp and Dt 
already known. For the full and segmented models, 
curve-fitting analyses were performed in Matlab using a 
trust region reflective algorithm with constraints 
(lsqcurvefit). The IVIM parameters had the following 
constraints: 0<fp<1, 0<Dt<10 μm2/ms, 0<Dp<500 μm2/ms. 
Finally, the Bayesian model was implemented using a 
previously published algorithm(4). This approach, which 
takes the least squares data from the full model as a 
prior distribution leads to a shrinkage effect, where 
outlier values are pinched towards the center of the 
parameter histogram. Circular ROIs with 20mm radii 
were drawn in three consecutive slices in the lower right 
lobe of the liver. Mean values of each parameter were extracted on a voxelwise basis within the ROI and compared 
across fitting model with a one-way ANOVA and post hoc Tukey’s test. Parameter values at the constraints were 
excluded from further analysis. Repeatability was analyzed via the within-subject coefficient of variation (wCV) and 
the repeatability coefficient (RC). 
Results Results are summarized in Table 1 and Figure 1. There were no significant differences across models for fp 
and Dt. For Dp, all three models significantly differed with each other. The Bayesian model resulted in the highest Dp, 
followed by the full model and then the segmented model. Repeatability was comparable for the full and segmented 
models. The Bayesian model resulted in worse repeatability for fp and Dp. Example parametric maps are shown in 
Figure 2. Despite worse repeatability, the Bayesian-derived maps were qualitatively less noisy and cleaner looking 
than the full or segmented maps. 
Discussion Bayesian modeling resulted in less repeatable maps than the full or segmented models, especially for the pseudodiffusion parameter. The 
Bayesian shrinkage model employed in this study results in a shrinkage effect where outlier voxels get squeezed towards the center of distribution(4). 
Therefore, voxels classified as outlier voxels and excluded from further analysis by the full or segmented models get included in the Bayesian analysis. 
These voxels still tend to have a relatively high Dp and may be the cause of increased Dp and worse repeatability seen with the Bayesian analysis. One 
remedy could be to use a lower threshold to exclude these voxels from further analysis. 
Conclusion The choice of IVIM fitting model affects both the value and repeatability of IVIM parameters, especially for Dp. The full and segmented 
models were comparable, while the Bayesian technique resulted in higher Dp and lower repeatability, despite less noisy parametric maps.  
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Figure 1. Mean IVIM
parameters for the full,
segmented, and Bayesian
models. Error bars depict
standard error. 
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Figure 2. Parametric IVIM maps for the full, segmented,
and Bayesian models. 
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wCV RC wCV RC wCV RC 
Fractional Perfusion (fp) 0.051 0.038 0.075 0.057 0.10 0.065 
Molecular Diffusion (Dt) 0.094 0.00028 0.086 0.00026 0.070 0.00022 
Pseudodiffusion (Dp) 0.13 0.035 0.14 0.023 0.25 0.089 

Table 1. Repeatability of IVIM parameters for the full, segmented, and 
Bayesian models. Abbreviations: wCV = within subject coefficient of variation; 
RC = repeatability coefficient 
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