QUANTIFICATION AND REPRODUCIBILITY OF SINGLE KIDNEY FUNCTION USING DCE-MRI IN HEALTHY SUBJECTS

Eli Eikefjord^{1,2}, Erling Andersen³, Jan Ankar Monssen¹, Erlend Hodneland⁴, Erik Hanson⁵, Arvid Lundervold^{1,4}, and Jarle Rørvik^{1,2}

¹Radiology, Haukeland University Hospital, Bergen, Hordaland, Norway, ²Clinical Medicine, University of Bergen, Bergen, Hordaland, Norway, ³Clinical Engineering, Haukeland University Hospital, Bergen, Hordaland, Norway, ⁴Biomedicine, University of Bergen, Hordaland, Norway, ⁵Mathematics, University of Bergen, Hordaland, Norway

PURPOSE. To evaluate the intra subject reproducibility and variance in estimation of renal perfusion and filtration rate assessed with repeated DCE-MRI examinations.

METHODS. Twenty healthy volunteers, mean age 25 years (SD=5) were scanned twice, 7 days apart, with identical 3D fast low angle shot (FLASH) sequences on our 1.5 T scanner (Siemens, Avanto). Instructions were given on fluid and food intake and all participants were asked to copy their regimen prior to each MRI-scan. Sequence parameters were: TR/TE: 2.36 ms/0.8 ms, FA: 20°, matrix: 192x192, voxel-size: 2.2x2.2x3 mm³, time resolution: 2.3 s, iPAT: 3, total acquisition time: 354 s. A dose of 0.025 mmol/kg Dotarem (Guerbet) was injected at 3 ml/s followed by a 25 ml saline flush. Sequences were run continuously with predefined breath-hold intervals, and free-breathing volumes were retrospectively discarded according to motion artefacts. A ROI-based two-compartment renal filtration model was applied on motion corrected breath-hold volumes using the analysis tool PMI¹ for quantification of blood flow (F_b), blood transit time (T_b), blood volume (V_b), tubular flow (F_T), tubular transit time (T_T), extraction fraction and GFR. Single kidney (SK) volumes and AIF were outlined semi-automatically using thresholds applied to perfusion maps. Intra-subject reproducibility was analyzed using mean coefficients of variations (CV), intra-class correlation coefficients (ICC) and Bland-Altman statistics

RESULTS. The MRI-based mean renal function estimates were all in physiological normal ranges (Table 1), no statistical significant (p>0.05) systematic differences between MR1 and MR2 estimates were found using a t-test. The group mean blood flow (F_b), extraction fraction and SK-volumes were reproduced with excellent test-retest agreement, other parameters showed slightly lower reproducibility (Table 1). The group mean squared coefficient of variation (CV^2) between SK-parameters from MR1 and MR2 were for F_b : 17%, T_b : 18%, V_b : 14.5%, F_T : 15%, T_T : 24.5, extraction fraction: 23% and GFR: 14%. Mean differences in SK-GFR and renal blood flow (F_b) between MR1 and MR2 were 3.5 ml/min (95 % CI: -5.3-4.2) and 43.7 ml/100ml/min (95 % CI: 0.9-86.6), as illustrated in Bland-Altman plots (Fig.1, Fig.2).

DISCUSSION. Our study demonstrates SK-perfusion and filtration reproducibility (CV) in the range of 14-24.5%, where the vascular parameters F_b , T_b and V_b showed better test-retest agreement than the filtration parameters F_T , T_T and the extraction fraction. These results correspond well with previously reported reproducibilities of overall renal estimates using DCE-MRI 7-18% 2 and 25% for renal blood flow 3 . The within-subject variation may be accounted for partly by physiological day-to day variations related to state of hydration and nutrition 4 . Moreover, functional parameter estimates will also depend on methodological factors such as selection of arterial input function (AIF) and the presence of various artefacts 5 . The two outliers from the 95% CI in GFR-estimates (Fig.1) were both hampered by a combination of imperfect AIF and image artefacts.

CONCLUSION. Our results indicate that DCE-MRI can provide reliable and reproducible quantification of renal function in healthy volunteers presuming a high-quality MR-examination.

Table 1. Group means (standard deviations) and reproducibility of single kidney (SK) functional estimates between MR1 and MR2.

Parameter	MR1		MR2					
	Left Mean (SD)	Right Mean (SD)	Left Mean (SD)	Right Mean	ICC _{Left}	p	ICC _{Right}	p
SK region volume	161 (22)	158 (19)	162 (21)	162 (20)	0.9	< 0.001*	0.9	< 0.001*
Blood-flow (ml/100ml/min)	390 (121)	426 (138)	428 (88)	475 (108)	0.7	< 0.005*	0.8	< 0.001*
Blood MTT (sec)	4.3 (0.98)	4,6 (1.05)	4.2 (0.97)	4.2 (0.92)	0.6	0.022	0.4	0.119
Blood volume (ml/100ml)	26 (5)	31 (7)	29 (4)	32 (4)	0.6	0.038	0.7	0.006
Tubular flow (ml/100ml/min)	29 (6)	32 (6)	29 (5)	34 (8)	0.6	0.038	0.4	0.105
Tubular MTT (min)	2.4 (0.6)	2.5 (0.5)	2.8 (0.9)	2.8 (1.1)	0.5	0.053	0.3	0.194
Extraction fraction (%)	14.2 (5.5)	14.1 (5.7)	11.8 (2.6)	12.3 (3.0)	0.7	0.01	0.7	0.004*

Fig. 1 Bland-Altman plot showing agreement in total GFR-estimates obtained with MR1 and MR2 $\,$

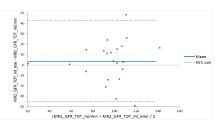
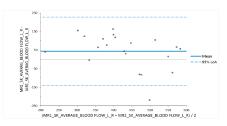



Fig. 2 Bland-Altman plot showing agreement in total renal blood flow (F_b) estimates obtained with MR1 and MR2 $\,$

REFERENCES.

- 1. Sourbron, S., Biffar, A., Ingrisch, M., et al. PMI: platform for research in medical imaging. Magn Reson Mater Phy. 2009; 22:539.
- 2. Tofts, P.S., et al., Precise measurement of renal filtration and vascular parameters using a two-compartment model for dynamic contrast-enhanced MRI of the kidney gives realistic normal values. Eur Radiol, 2012. 22(6): p. 1320-30.
- 3. Cutajar, M., et al., Comparison of ASL and DCE MRI for the non-invasive measurement of renal blood flow: quantification and reproducibility. Eur Radiol, 2014. 24(6): p. 1300-8.
- 4. Jorgensen, B., et al., Reproducibility of contrast enhanced magnetic resonance renography in adolescents. J Urol, 2006. 176(3): p. 1171-6.
- 5. Cutajar, M., et al., The importance of AIF ROI selection in DCE-MRI renography: reproducibility and variability of renal perfusion and filtration. Eur J Radiol, 2010. **74**(3): p. e154-60.