

An anthropomorphic MR phantom of the gravid abdomen including the uterus, placenta, fetus and fetal brain.

Pablo Garcia-Polo¹, Borjan Gagoski², Bastien Guerin³, Eric Gale³, Elfar Adalsteinsson^{4,5}, P. Ellen Grant², and Lawrence L. Wald^{3,5}

¹Martinos Center, MGH, M+Visión Advanced Fellowship, Charlestown, MA, United States, ²Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States, ³Department of Radiology, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States, ⁴Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States, ⁵Harvard-MIT Health Sciences and Technology, Cambridge, Massachusetts, United States

Target audience: Researchers needing a realistic anthropomorphic pelvic phantom of a pregnant woman for coil and pulse sequence optimization as well as safety validation.

Purpose: To design and build an MRI phantom that mimics critical organs and typical fetal motion in pregnancy at 36-weeks of gestational age. The tissues of interest include the pregnant woman's torso, the uterus, the placenta, as well as the fetal brain and body. The phantom will facilitate MR sequence development, motion navigation, motion artifact estimation and mitigation, while simultaneously enabling safety evaluation.

Introduction: Fetal MRI is increasingly used in the examination of fetuses with high risk or ultrasound suspicion of anomalies as MRI provides higher soft tissue contrast. The most common indications for fetal MRI are neurological followed by the evaluation of suspicious thoracic masses. However, the accuracy of MRI is limited by the spatial resolution and image contrast achievable in the ~ 30 second time frame necessary to limit motion artifacts. Thus the development of MR acquisition methods insensitive to fetus movement is of paramount importance. Yet, as newer approaches are envisioned, it is important to fully test the method and validate safety before the novel approaches are attempted in highly vulnerable human fetuses. The best method to test novel advances is in an accurate phantom. To our knowledge no anthropomorphic pregnant woman phantom is available for this purpose.

Methods: A 36-week pregnant woman underwent MRI examination on a Siemens Skyra 3T scanner, after signed consent. The mother was placed head-first into the scanner lying on her left side. Two commercial receive only array coils were used to cover the gravid abdomen: an 18-element body flexible receive array coil placed anteriorly and a 12-element spine coil, which covered the posterior. A single shot axial HASTE sequence was used to reduce B0 effects and to obtain the images used for creating the 3D model of the pregnant woman and fetus. These images (192x192 pixels over 48cm FOV; slice-thickness 2.5mm; echo spacing 5.62ms, TE = 119ms, TR = 1.8s, partial Fourier of 5/8;GRAPPA acceleration factor of 2) were manually segmented using 3DSlicer¹ into 5 compartments: uterus, fetus brain, fetus body and placenta. Each segmented tissue class was then smoothed and, eroded and dilated to eliminate island effects. 3DSlicer allows exporting the segmented tissues in *.stl format, which contains the necessary meshes for the CAD design. Then, Meshlab² was used to decrease the mesh size (number of faces) and to smooth the final surfaces. These decimated and smoothed *.stl files were then imported into Rhinoceros 3D³ to create the joints, sliders and grooves for fitting the different compartment spaces together as well as filling spaces in which to pour the agar gel. The different compartments will be filled using the agar-based tissue-mimicking gels compositions in Table 1. Solutions approximating the T₁ and T₂ of woman torso, uterus, placenta, fetus body and brain were prepared from aqueous mixtures of Magnevist™ (Gd, r₁ = 3.1, r₂ = 3.7 mM⁻¹s⁻¹) and Ferumoxytol™ (Fe, r₁ = 7.5, r₂ = 92 mM⁻¹s⁻¹). Also a temperature contrast agent TMDOTMA and/or ethylene glycol will be added to evaluate the temperature rise resulting from SAR deposition⁵. The uterus compartment will be agar-free as in further versions of the phantom fetus movement will be added. A 3D printer Fortus 360mc with extended print area will fabricate the sections. Silicone sealant is needed to seal the halves of each compartment.

Tissue	NaCl [Weight %]	Conductivity (S/m)	T1/T2ms	[Gd] (mM)	[Fe](mM)
Woman Torso	0.27	0.72	726/95	0.1105	0.15868
Uterus	0.79	1.5	4000/2000	0	0
Placenta	0.62	1.24	1700/366	0.0545	0.02255
Fetus Body	0.27	0.72	583/92	0.2215	0.10391
Fetus Brain	0.09	0.45	977/101	0	0.10310

Table 1. Solutions and expected values for the different tissues

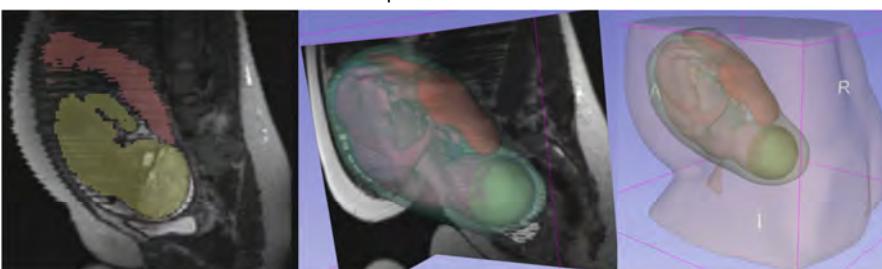


Fig. 1. - Detail of the tissues segmentations and 3D modeling with 3DSlicer.

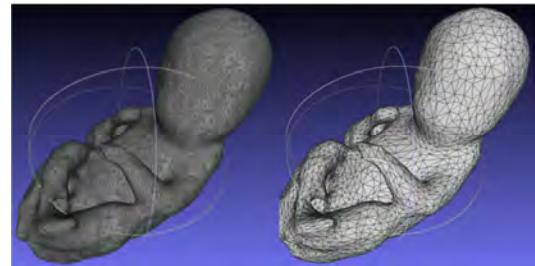


Fig. 2. – Decimation and smoothing of the fetus model.

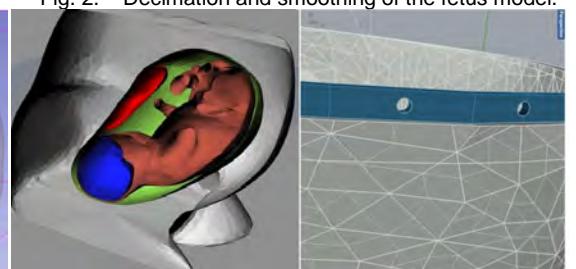


Fig. 3. – Rhinoceros 3D model.

Fig. 4. – Detail: a joint in the uterus.

Results: Figure 1 shows the steps followed in 3DSlicer to obtain the meshes that are then smoothed and decimated (reduction of faces) using MeshLab (Figure 2). Figure 3 shows the 3D-printer ready CAD files with all joint, grooves and sliders for joining the different compartment together.

Discussion: We have designed a realistic anthropomorphic phantom of a 36-week pregnant woman phantom that includes only the basic tissues: uterus, placenta, fetus body and fetus brain, in order to minimize the number of plastic boundaries in the phantom. This phantom will be useful for validation of sequences and motion tracking approaches specifically designed for fetal imaging as well as SAR estimations and validations. This phantom will also be helpful for designing and bench testing of conformal coil arrays used for high resolution and high sensitivity fetal imaging.

Acknowledgements: This project has been funded through a grant from the National Institutes of Health, NIBIB grant R01EB017337, and also funding from Consejería de Educación, Juventud y Deporte of Comunidad de Madrid and the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n° 291820.

References:

- [1] Fedorov, A.; et al. *3D Slicer as an image computing platform for the Quantitative Imaging Network*. Magnetic resonance imaging 30.9 (2012): 1323-1341.
- [2] Cignoni, P.; et al. *Meshlab: an open-source 3d mesh processing system*. Ercim news 73 (2008): 45-46.
- [3] Robert McNeel, Inc. Rhinoceros 3D, Estados Unidos, <http://www.rhino3D.com>, 2003, last accessed, Nov. 10, 2014.
- [4] <http://niremf.ifac.cnr.it/tissprop/htmlclie/htmlclie.htm#atsftag>, last accessed, Nov. 10, 2014.
- [5] Graedel, N.N., et al., *An anatomically realistic temperature phantom for radiofrequency heating measurements*, MRM (2014)