Mapping Human Cerebral Vascular/Metabolic Activity Coupling at High-Resolution

William D. Rooney^{1,2}, Xin Li¹, Dennis N. Bourdette³, and Charles S. Springer, Jr. ^{1,2}

¹Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, United States, ²Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, United States, 3 Department of Neurology, Oregon Health & Science University, Portland, Oregon, United States

Introduction: The blood-brain barrier protects cerebral parenchymal cells. In parallel, the exquisite neurogliovascular unit [NGVU] has evolved to include the microvasculature in intimate maintenance of brain cellular metabolic activity (1,2). Fortunately, the mean brain capillary water molecule lifetime $[\tau_n]$ can be readily mapped with high-resolution from a straightforward DCE-MRI experiment (3-5). It has been shown that the unidirectional rate constant for equilibrium capillary water efflux, $k_{po} [\equiv \tau_b^{-1}]$, is dominated by the capillary wall permeability coefficient, P_W^{\dagger} , not the capillary radius (4). Furthermore, the water exchange flux employs a trans[endothelial]cellular pathway, with less than 5% using the tight junction route (4). Here, we show that k_{po} tracks brain metabolic activity.

Methods: Healthy [2M/4F, 30 (±10 y)] and RRMS [2M/4F, 46 (±7 yr)] subjects gave informed consent. A 7T MRI instrument [Siemens], with quadrature transmit and 24-channel phased-array receive head RF coils, was used. The DCE-MRI acquisitions employed the single-slice IR turboflash technique detailed in (4,5). The transverse slice had nominal (2x2x10) mm³ [40 μ L] resolution.

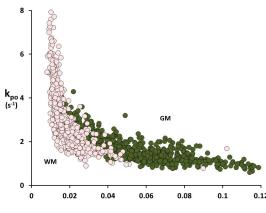

Results: Figure 1 shows resting-state axial parametric maps of a 22 y F control subject. The biomarkers are: [a] $R_{1\text{exy}}$, [b] v_b , and [c], k_{po} : $R_{1\text{exy}}$ is the intrinsic extravascular 1H_2O longitudinal relaxation rate constant, and v_b is the blood volume fraction $[\equiv \rho^{\dagger} \cdot V,$ the capillary number density-volume product] (4,5). The R_{lexv} and v_b maps are accurate (4) and important biomarkers reflecting well-known brain tissue properties. R_{1exv} is greater in white matter [WM] than gray matter [GM] because of the greater WM macromolecular content. $v_b[GM] > v_b[WM]$ [~0.03 to ~0.01] because of the greater GM ρ^{\dagger} . The new k_{po} map exhibits greater values in centrum semiovale [CSO] WM than in cortical GM.

Figure 1.

Figure 2 shows the pixel-by-pixel kpo vs. vb scatter plot of much of the Fig. 1b,c data. Pixels were chosen from 2500 in a square ROI centered on and covering ~75% of the image slice: they were assigned from the R_{1exv} histogram. The 649 pixels with R_{1exv} from 0.80 to 0.92 s⁻¹ were identified as WM [pink points]. The 670 pixels from 0.62 to 0.72 s⁻¹ are labeled GM [olive points]. Interestingly, the WM points exhibit a mostly vertically oriented cluster, while the GM points are mostly horizontally clustered. Table 1 gives the population-averaged v_b and k_{po} values for ~3.6 mL "pure" WM and GM ROIs.

Discussion: Because of active trans-membrane water cycling, the unidirectional equilibrium cellular water efflux rate constant [kio] tracks the cell membrane Na⁺,K⁺ ATPase [NKA] turnover (6) - perhaps the cell's most vital enzyme flux. Table 1 shows kpo to be directly and inversely proportional, respectively, to literature ATP and Na+ tissue concentrations, suggesting it too is metabolic. However, these are thermodynamic properties. Since k_{po} is a kinetic quantity, it must be finally validated with a flux measurement. The gold standard is CMR_{oxphos} measured by ³¹PMRSI-MT (9), itself electroencephalographically validated (10). But k_{po} is a unique kinetic parameter [mol(H₂O)/s/capillary], being independent of the *intensive* ρ^{\dagger} (4). [It is *supra-intensive*.] Since v_b is intensive [capillary volume/ μ L(tissue)], the k_{po} v_b product can be compared with $CMR_{oxphos}, \ an \ \textit{ordinary} \ intensive \ property \ [pmol(ATP)/s/\mu L(tissue)]. \ Table \ 1 \ shows \ the \ k_{po}\text{-}v_b$

GM/WM ratio [2.0] in good agreement with the CMR_{oxphos} ratio [3.2], measured by the quite different ³¹PMRSI-MT method [requiring ¹H₂O segmentation] (9). The synaptic proximities and synergistic metabolic co-operativities of polar brain NGVU endothelial, neuroglial, and neuronal cells make plausible a cascade mechanism (4) whereby a chain of NGVU $k_{io}\mbox{ changes}$ is communicated to $k_{po},$ making it a measure of NGVU NKA turnover. For a 44 µL rat brain ROI in vivo, k_{io} was measured as 1.8 s⁻¹ using a very invasive intracerebroventricular CA infusion (11). This is similar to the Table 1 kpo values, consistent with the chain mechanism (4).

 $v_b = \rho^{\dagger} \cdot V$

Table 1. The Biomarker k _{po} Measures Metabolically Activity						
	SSP DCE-MRI (1H2O)		31PMRSI	23NaMRSI	SSP DCE-MRI (¹ H ₂ O)	31PMRSI-MT
	V _b	k _{po} (s ⁻¹)	[ATP _t] (mM)	[Na _t] (mM)	k _{po} •v _b (s ⁻¹)	CMR _{oxphos} (pmol(ATP)/s/µL)
Controls						
WM	0.014 (±0.002)	3.2 (±0.56)	2.43	19	0.045	50
GM	0.031 (±0.004)	2.9 (±0.59)	1.62	31	0.090	160
GM/WM					2.0	3.2
RRMS						
NAWM	0.019 (±0.002)	2.2 (±0.20)	2.11	27	0.042	
NAGM	0.045 (±0.004)	2.0 (±0.13)	1.29	36	0.090	
References	this work [n = 6] (±SEM)		7	8	this work	9

Figure 2.

The essentially vertical Fig. 2 pink point cluster suggests that in CSO WM v_b [probably ρ^{\dagger}] is tightly regulated near 0.015, but a range of NGVU NKA activity is present. This may reflect increased metabolic activity in common tracts shared by fluctuating resting-state neural circuits [Fig. 1c]. In contrast, the essentially horizontal Fig. 2 olive point cluster suggests that in cortical GM kpo is regulated near 1.8 s⁻¹ for "pure" GM [with vb near 0.03]. Larger vb values are likely due to partial-volume-averaging of larger vessels near the cortical surface [Fig. 1b]. Though k_{po} is ρ^{\uparrow} -independent, it does depend on the mean vascular volume [V] factor, but to only the $V^{-1/2}$ power (4), which likely causes the slight k_{po} decline at large v_b . For 6 relapsing-remitting MS patients, the averaged normal-appearing WM and GM ROI supra-intensive kpo values are each decreased 31 % from normal (Table 1), strongly suggesting whole-brain involvement. However, the kpo vb products remain completely unchanged. The ρ^{\dagger} quantity seems recruited up to maintain constant intensive tissue NKA activity in this early disease stage. Therefore, neither the ³¹PMRSI-MT nor the ¹⁵OH₂ PET [measuring the P_W S product: S is the intensive vascular surface area/µL(tissue)] intensive methods could detect this. Only the supra-intensive k_{po} senses this metabolic decline.

Grant Support: NIH: RO1-NS040801; RO1-EB007258; UO1-CA154602; R44-CA180425; UL1-RR024140-S1.

References: 1. Abbot, Rönnbäck, Hansson, Nat Rev Neurosci 7:41-53 (2006). 2. Rinholm, Bergersen, Nat 487:435-436 (2012). 3. Rooney, Yankeelov, Coyle, Telang, Springer, PISMRM 11:2188 (2003). 4. Rooney, Sammi, Li, Moloney, Berlow, Bourdette, Springer, PISMRM 22:3387 (2014). 5. Rooney, Li, Grinstead, Neuwelt, Springer, PISMRM 22:4600 (2014). 6. Springer, PISMRM 22:3400 (2014). Li, Tudorica, Oh, Roy, Chui, Naik, Holtorf, Afzal, Rooney, Huang, NMRB 27:760-773 (2014). 7. Sammi, Berlow, Barbara, Selzer, Grinstead, Kim, Bourdette, Rooney, Neurol 78:S21.004 (2012). 8. Inglese, Madelin, Oesingmann, Babb Wu, Stoekel, Herbert, Johnson, Brain 133:847-857 (2010). 9. Zhu, Qiao, Du, Xiong, Liu, Zhang, Ugurbil, Chen, Neuroimage 60:2107-2117 (2012). 10. Du, Zhu, Zhang, Friedman, Zhang, Ugurbil, Chen, PNAS 105:6409-6414 (2008). 11. Quirk, Bretthorst, Duong, Snyder, Springer, Ackerman, Neil, MRM 50:493-499 (2003).