

MR-microscopy of human hippocampi: Multiparametric characterization of hippocampal sclerosis

Clarissa Gillmann¹, Roland Coras², Michael Uder¹, Ingmar Blümcke², and Tobias Bäuerle¹

¹Institute of Radiology, University Hospital Erlangen, Erlangen, Germany, ²Institute of Neuropathology, University Hospital Erlangen, Erlangen, Germany

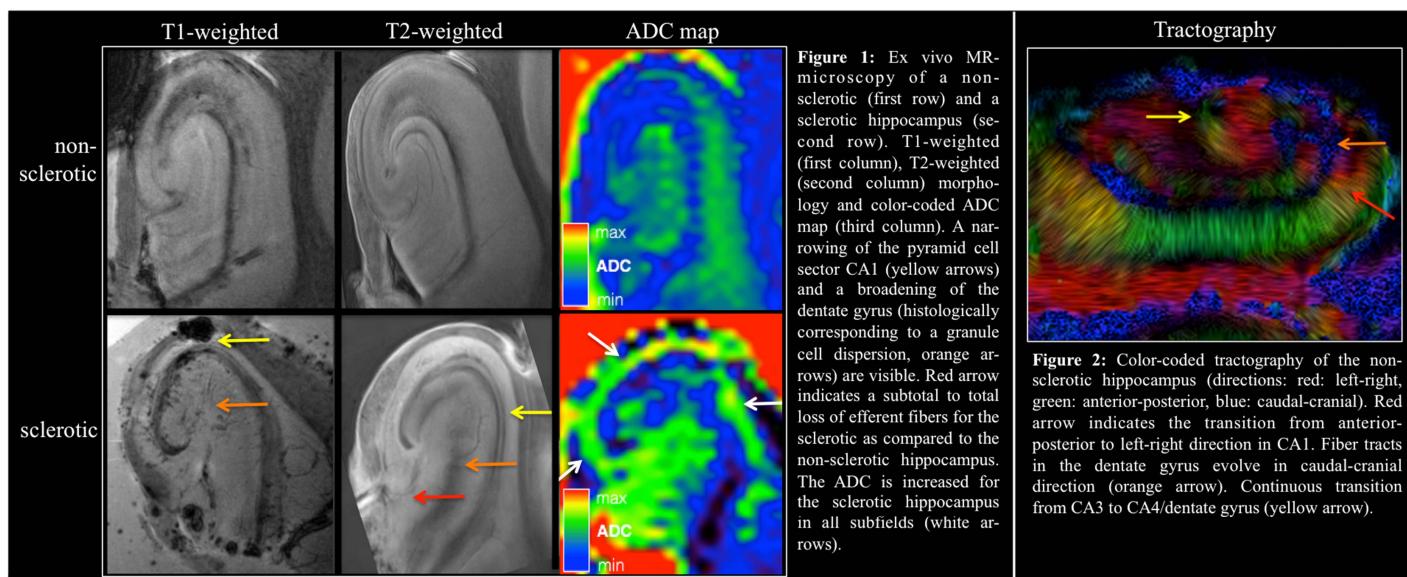
Purpose

According to guidelines of the International League against Epilepsia (ILAE), the neuropathologic differentiation of hippocampal sclerosis is based on the quantification of cell loss in subfields (CA1-CA4) of the hippocampus [1]. In this initial study, we investigate whether the detection and subfield-specific evaluation of the underlying tissue changes is also possible using multiparametric MRI in high resolution at 7T.

Materials and Methods

MR sequence evaluation was performed on the basis of a resected non-sclerotic (ILAE no-HS) and a sclerotic (ILAE Type 1) hippocampus using a preclinical 7T-MRI scanner (ClinScan 70/30, Bruker). Morphologic images were acquired using a T1-weighted gradient echo sequence (repetition time (TR)/echo time (TE): 2000/25 ms, averages (av): 2, resolution (res): 43x43x300 μ m, acquisition time (TA): 37 h) and a T2-weighted turbo spin echo sequence (TR/TE: 8520/95 ms, av: 4, res: 43x43x300 μ m, TA: 54 h). Voxel based maps of T1-, T2- and T2*-relaxation times were calculated for each hippocampus. Diffusion tensor imaging (DTI) was performed with six b-values ($b=0, 200, 400, 600, 800, 1000$) in 265 directions (TR/TE: 8000/50 ms, av: 3, res: 300 μ m isotropic, TA: 8.5 h). CA1, CA2, CA3 and CA4 were delineated on T2-weighted images according to [2]. In each subfield, T1-, T2-, T2*-relaxation times, apparent diffusion coefficient (ADC) and fractional anisotropy (FA) were determined. Based on DTI data, fiber tracts were reconstructed for the non-sclerotic hippocampus using syngo software (Siemens). After imaging, hippocampi were passed on to histological examination for being matched with MRI data.

Results


On morphologic images, a narrowing of the pyramid cell sector CA1 and a subtotal to total loss of efferent fibers for the sclerotic as compared to the non-sclerotic hippocampus are discernible (Figure 1). The dentate gyrus is broadened (histologically corresponding to a granule cell dispersion) and focally not definable (granule cell rarefaction). The ADC is increased by 90, 117, 111 and 78 % in CA1, CA2, CA3 and CA4 as compared to the non-sclerotic hippocampus. Further parameters vary only moderately between sclerotic and non-sclerotic hippocampi (T1: 19, 20, 19, 9 % in CA1, CA2, CA3 und CA4, respectively; T2: 4, 3, 12, 18 %; T2*: 3, 31, 14, 13 %; FA: 1, 6, 1, 1 %). Tractography based on DTI data of the non-sclerotic hippocampus is shown in Figure 2.

Conclusions

Distinct morphologic differences between sclerotic and non-sclerotic hippocampi are clearly visible on T1- and T2-weighted high-resolution images. With respect to multiparametric imaging, ADC is most promising for differentiation of sclerotic and non-sclerotic subfields. In conclusion, MR-microscopy at 7T supplements neuropathologic evaluation of hippocampal sclerosis. Furthermore, time-adapted imaging protocols might be translated for patient application on ultra high field systems.

References

- [1] Blümcke I., et al, A new clinico-pathological classification system for mesial temporal lobe sclerosis. *Acta Neuropathol* (2007) 113:235-244.
- [2] Mueller S.G., et al, Measurement of hippocampal subfields and age-related changes with high-resolution MRI at 4T. *Neurobiology of aging* (2007) 28:719-726.

Figure 1: Ex vivo MR-microscopy of a non-sclerotic (first row) and a sclerotic hippocampus (second row). T1-weighted (first column), T2-weighted (second column) morphology and color-coded ADC map (third column). A narrowing of the pyramid cell sector CA1 (yellow arrows) and a broadening of the dentate gyrus (histologically corresponding to a granule cell dispersion, orange arrows) are visible. Red arrow indicates a subtotal to total loss of efferent fibers for the sclerotic as compared to the non-sclerotic hippocampus. The ADC is increased for the sclerotic hippocampus in all subfields (white arrows).

Figure 2: Color-coded tractography of the non-sclerotic hippocampus (directions: red: left-right, green: anterior-posterior, blue: caudal-craniial). Red arrow indicates the transition from anterior-posterior to left-right direction in CA1. Fiber tracts in the dentate gyrus evolve in caudal-craniial direction (orange arrow). Continuous transition from CA3 to CA4/dentate gyrus (yellow arrow).