Iron content of functional networks in the aged human cortex

Valerie C. Anderson¹, Manoj K. Sammi¹, Yosef A. Berlow¹, Jeffrey A. Kaye², Joseph F. Quinn², and William D. Rooney¹ Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, United States, Department of Neurology, Oregon Health & Science University, Portland, OR, United States

Introduction: Brain iron content increases with age and may contribute to the memory decline in older individuals. In the cortex, regional differences in atrophy, thickness, and metabolism have been demonstrated² and may account for the variation in cognitive performance frequently observed. The purpose of this study is to characterize the spatial distribution of cortical Fe concentration, [Fe], in the healthy elderly brain and examine the extent to which [Fe] varies in circuits important in cognitive function. To accomplish this, we used a novel quantitative MRI approach combining R₁ and R₂ measurements and relaxivity models that incorporate terms for both the macromolecular volume fraction, f_M, and [Fe].

Methods: 20 healthy older subjects $(63 \pm 9 \text{ yrs}; 11 \text{ males}, 9 \text{ females})$ with no history of neurologic or vascular disease provided informed consent and were enrolled. MR data were acquired on a 7T whole-body instrument (Siemens MAGNETOM) with 8- or 24-channel RF head coil. Anatomic inversion recovery (IR) MPRAGE images (TR/TE/TI/FA 2300 ms/ 2.8 ms/ 1050 ms/6°; 0.8 mm³) were acquired for registration and cortical reconstruction. Full volume R₁ maps were prepared from a variable TI (300, 1800, 3200 ms; and no inversion pulse) IR-MPRAGE (TR/TE/FA 3500 ms/ 2.4 ms/ 6°; nominal in-plane resolution 1 mm²; 2 mm slice thickness) image set after linear registration (FSL; http://fsl.fmrib.ox.ac.uk) and voxelwise evaluation of the Bloch equations accounting for all RF pulses and delays and assuming monoexponential IR recovery.³ Bilateral regions of interest (ROI) were defined manually or by segmentation of the co-registered anatomic T₁-weighted image. Macromolec- ular volume fraction ($f_M = 1$ - fractional water content) was determined on a voxelwise basis assuming a linear dependence of tissue R_1 values on f_M . 5 R_2 maps were prepared from a 2D dual echo TSE sequence (TE 11, 87 ms; TR 10000 ms, ETL 7, nominal in-plane resolution 0.44 mm², 2 mm slice thickness, 2 mm interslice gap) assuming monoexponential signal intensity decay.

Multivariable linear regression modeling of mean ROI R₂ values using postmortem [Fe]¹ and ROI f_M values as independent variables yielded estimates of transverse relaxivity at macromolecular and Fe sites, r_{2M} and r_{2Fe} , respectively. Maps of brain Fe content were calculated assuming $R_2 = R_{20} + r_{2M}f_M + r_{2Fe}[Fe]$, where $R_{20} = R_2$ value of CSF (Eq. 1). Cortical [Fe] was determined after non-linear registration of Fe maps to MNI 152 standard space and preparation of pial surface masks from the anatomic T₁-weighted image (Freesurfer). Application of MNI 152 cortical network masks⁸ to Fe pial surface maps yielded estimates of [Fe] in visual (V), somatomotor (S), dorsal attention (DA), ventral attention (VA), frontoparietal (FP), and default (D) networks. All statistical analyses were performed in Stata 12 (College Station, TX). P values were adjusted for multiple comparisons using Tukey HSD.

Results and Discussion: Linear regression of ROI mean R₁ and f_M values, determined from histogram fittings, yields an r_{1M} value of $1.7 \pm 0.3 \text{ s}^{-1}$, in good with that reported previously⁵.

Table 1. Mean R₁, R₂ and [Fe] Values in Selected Regions^a

				Fe,	Fe,
Region	R_1, s^{-1}	R_2, s^{-1}	R_2 , s^{-1} b	mg/100 g	mg/100 g ^c
Caudate	0.57 ± 0.01	12 ± 1	16.2	10 ± 2	9 ± 2
Pallidum	0.74 ± 0.03	20 ± 2	15 ± 1^{d}	20 ± 3	21 ± 3
Putamen	0.61 ± 0.02	16 ± 2	14.2	16 ± 3	13 ± 3
Cortical GM	0.51 ± 0.01	8 ± 1	27.2	5 ± 2	3 ± 0.4
Deep WM	0.74 ± 0.03	11 ± 2	23.6	4 ± 2	4 ± 1
a b- a c- a - d a c a					

^a ± SD; ^bRef. 10; ^cRef. 1; ^d1.5T, Ref. 11; ^e3T, Ref. 12

Although gray matter (GM) and WM have different chemical composition and morphologies, the linearity of the plot (Fig. 1) suggests that r_{1M} does not vary substantially by tissue type at 7T. Multivariable linear modeling of mean ROI R2

values yields estimates of r_{2Fe} and r_{2M} of 0.58 ± 0.14 s⁻¹ per mg Fe/100 g tissue and 18.8 ± 9.8 s⁻¹ ¹/f_M, respectively, and confirms that both Fe and macromolecules account for a significant portion of R_2 variability at high field (F(2, 6) = 155.6, P< 0.001; P(Fe, f_M) < 0.05). A representative Fe map is shown in Fig. 2. Regional [Fe] estimates calculated from Eq. 1 and

Figure 1. (Left) R₁ map from 66 yr old subject. ROIs were defined in the basal ganglia, frontal cortex and deep white matter (WM; centrum semiovale, not shown). (Middle) Plot of average tissue R₁ vs. postmortem f_M values¹. Error bars indicate 1 SD. (Right) f_M map from the same subject.

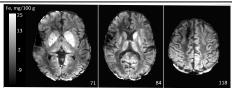


Figure 2. Fe map from a 59 yr old subject shows expected high iron content in basal ganglia. MNI z coordinate of slices shown at lower right.

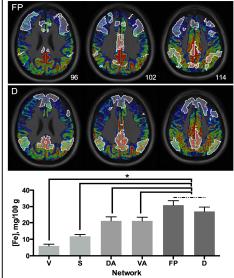


Figure 3. Frontoparietal (FP, top) and default (D, middle) networks (white) superimposed on average [Fe] pial surface map and T₁-w image (MNI z coordinates shown at lower right). Areas of highest [Fe] shown in red. (bottom) Fe content of functional networks. Error bars indicate SEM. * P (corr)< 0.05

summarized in Table 1 show good agreement with post-mortem values. In cortical networks, mean [Fe] ranged from 5.9-30.5 mg/100 g (P< 0.001). After adjustment for multiple comparisons, Fe content remained significantly higher in both FP and D circuits (Fig. 3). Although increased subject numbers will be necessary to confirm these findings, our results suggest that the vulnerability of frontoparietal and default networks to age-related brain changes⁹ may be associated with increased iron content.

Grant Support: NIH (AG 033638, AG008017) and NCRR (RR024140-04S1). Refs: 1. Hallgren and Sourander J Neurochem 3:41-51 (1958). 2. van Grain Support: Nift (AG 053038, AG008017) and NCRR (R024140-0431). Refs. 1. Hangleri and Solitander J. Neurochem 3:41-31 (1938). 2. Van Rooden, et al., Neurobiol Aging (2014) doi:10.1016/j.neurobiolaging 2014.07.006. 3. Deichmann and Haase, JMR 96:608-12 (1992). 4. Smith, et al., Neuroimage 17:479-89 (2002). 5. Rooney, et al., MRM 57: 308-18 (2007). 6. Mitsumori, et al., MRM 62:1326-30 (2009). 7. http://surfer.nmr.mgh.harvard.edu. 8. Yeo, et al., J Neurophysiol 106:1125-65 (2011). 9. Greenwood, et al., JINS 6:705-726 (1999). 10. Peters, et al., PISMRM 14:926 (2006). 11. Schenker, et al., Neuroradiology 35:119-24 (1993). 12. Hasan, et al., J Neurosci 31:16826-32 (2011).