

## Age-related increased R2 and R2\* correlates with increased brain iron in a normal ageing mouse model

Thomas Walker<sup>1</sup>, Christos Michaelides<sup>1</sup>, Harry Parkes<sup>2</sup>, William Crum<sup>1</sup>, Tina Geraki<sup>3</sup>, Amy Herlihy<sup>4</sup>, and Po-Wah So<sup>1</sup>

<sup>1</sup>Department of Neuroimaging, Institute Of Psychiatry, King's College London, London, United Kingdom, <sup>2</sup>CR-UK, Clinical MR Research Group, Institute of Cancer Research, Sutton, Surrey, United Kingdom, <sup>3</sup>Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom, <sup>4</sup>Agilent Technologies, Yarnton, Oxfordshire, United Kingdom

**Introduction:** Impaired cognitive and motor abilities are hallmarks of ageing, resulting from a multitude of perturbed molecular and structural mechanisms<sup>1, 2</sup>. Dysregulated iron homeostasis<sup>3</sup> has been postulated as one potential key mechanism, involving dysfunctional mitochondria and induction of oxidative stress. Application of MR relaxometry in ageing studies suggests age-related elevations in iron, most notably in the basal ganglia<sup>5-7</sup>. To date, no study has demonstrated correlation of age-related changes in MR relaxometry with direct measures of brain iron levels. The purpose of this research was therefore to measure age-related changes in R2 and R2\* in the basal ganglia and correlate these changes to direct iron levels by synchrotron-based X-ray fluorescence (SR-XRF) in a normal ageing mouse model. This study is thus targeted to an audience interested in age and age-related disease and the use of animal models of ageing to determine the biological substrates underlying age-related changes in MRI metrics.

**Methods:** Paraformaldehyde-fixed brains from male C57BL/6J mice aged 2 (n= 11), 6 (n= 8), 19 (n= 11) and 27 months (n= 8) underwent MRI at 7T. R2 relaxometry was performed with a multi-echo fast spin-echo sequence with a TR of 7600ms and 16 echo times with variable TE (11-186ms). R2\* relaxometry was performed with a multi-echo gradient echo sequence with a TR of 2000ms and 5 echo times with variable TE (2.5-26.5ms). For all relaxometry sequences, the field of view = 30mm x 30mm, matrix size = 256 x 256 and 40 contiguous axial slices were collected at 0.5mm thickness for whole brain coverage. Following MRI, brain samples were cryoprotected and sectioned at 40 $\mu$ m SR-XRF elemental iron mapping at Diamond, at 100 $\mu$ m in-plane resolution. Values of R2, R2\* and iron were obtained from regions of interest (ROIs) located in the basal ganglia (striatum, STR; globus pallidus, GP and substantia nigra, SN) using Image J (NIH) from the relaxometry and SR-XRF elemental iron maps, respectively.

**Results and Discussion:** Significantly higher R2 (data not shown) and R2\* was observed with advancing age in the STR, GP and the SN, with a greater increase observed with R2\* (P<0.001, Figure 1A-C). These findings are consistent with that seen from human studies of ageing<sup>5-7</sup>.

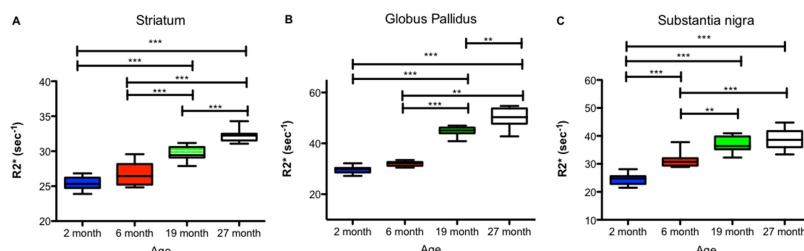



Figure 1. Comparison of 2, 6, 19 and 27 month mouse brain R2\* relaxometry in the (A) striatum, (B) globus pallidus and (C) substantia nigra.

the basal ganglia in normal ageing. Histopathological investigations are underway to determine the age-related changes in ferritin and the potential immune and neurodegenerative consequences of the aforementioned iron increase.

**Conclusion:** Age-related increases in R2 and R2\* found here in the aged C57BL/6J mouse brain are consistent with those reported in human ageing<sup>5-7</sup> and we have shown this arises, at least partially, from increased iron. Furthermore, normally ageing C57BL/6J mice may be a test-bed for exploring age-related mechanisms and testing future therapies to attenuate the detrimental effects of ageing.

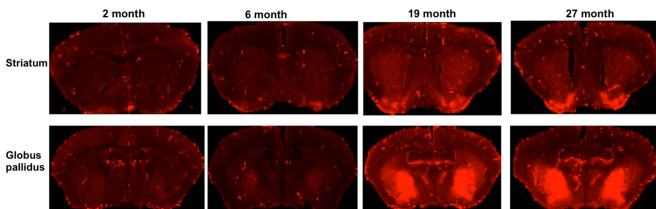



Figure 2. SR-XRF elemental iron maps showing elevated iron in the STR and GP from 2 to 27 months of age

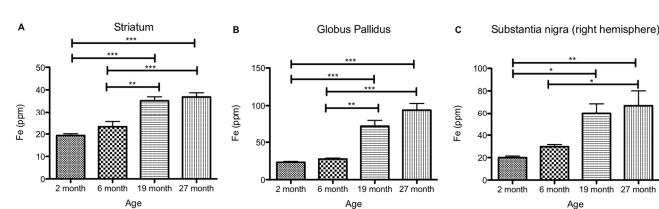



Figure 3. Comparison of 2, 6, 19 and 27 month mouse brain iron content in the (A) striatum, (B) globus pallidus and (C) substantia nigra.

**References:** (1) Cass WA, et al. *Neurobiology of Aging*. 2007; 28: 258-71. (2) Clausen A, et al. *Neurobiology of Aging*. 2010; 31: 425-33. (3) Zecca L, et al. *Nature Reviews: Neuroscience*. 2004; 5: 863-873. (4) Schipper HM, et al. *Ageing research reviews*. 2004; 3: 265-301. (5) Bartzokis G, et al. *Magnetic Resonance Imaging*. 1997; 15: 29-35. (6) Bilgic B, et al. *Neuroimage*. 2012; 59: 2625-2635. (7) Penke L, et al. *Neurobiology of Aging*. 2012; 33: 510-517.