

Altered antioxidant profile in the healthy elderly occipital and posterior cingulate cortices measured via 7 T ^1H MRS

Malgorzata Marjanska¹, J. Riley McCarten², Laura S Hemmy², Dinesh K Deelchand¹, and Melissa Terpstra¹

¹Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States, ²Minneapolis VA Medical Center, Geriatric Research and Clinical Center, MN, United States

Target Audience: aging, dementia and oxidative stress researchers, geriatricians, and MR spectroscopists

Purpose: Oxidative stress occurs at an early stage of age related cognitive decline¹. Ascorbate (Asc, vitamin C) and glutathione (GSH) are key contributors to the antioxidant network. Prior ^1H MRS measurements of these antioxidant concentrations in the elderly² could have been confounded by transverse relaxation (T_2)³. Goals of this work were to utilize short echo time (T_E) ^1H MRS to overcome such confounding, and to study a brain region that is pertinent to the pathology of Alzheimer's disease (AD), i.e., the posterior cingulate cortex (PCC). Innovations were scanning at ultra-high field and focusing of multiple transmitters to optimize power. Our hypotheses were that GSH signal differences in the OCC would be less pronounced than when measured at long T_E and that Asc homeostasis⁴ would be preserved.

Methods: Healthy volunteers (MOntreal Cognitive Assessment scores ≥ 25), 17 young (age 19-22, 5 subjects scanned 3 times) and 16 elderly (age 70 - 88, 6 subjects scanned 3 times), were studied using a 7-T, 90-cm horizontal bore magnet equipped with a Siemens console and body gradients. A home-built 16-element transmit-receive transmission line head array⁵ was used and transmit phase of each channel was optimized via individual 1 kW CPC amplifiers⁶. *In vivo* ^1H NMR spectra were acquired from OCC and PCC volumes of interest (VOI = 8 cm³, figure 1) using a STEAM sequence with VAPOR water suppression and outer volume suppression⁷ (T_R = 5 s, T_E = 8 ms, NS = 64 for OCC, 128 for PCC). First- and second-order shims were adjusted using FASTMAP⁸. Metabolite concentrations were quantified using LCModel⁹ with a simulated basis set (18 metabolites and experimental macromolecule spectra) and water corrected for tissue content as the internal reference². Age groups were compared using a 2-tailed t-test without correction for multiple comparisons.

Table 1. Mean \pm SD [Asc]_{brain} and [GSH]_{brain} in the two brain VOIs.

VOI	Metabolite	Young	Elderly	p
OCC	Asc	1.5 \pm 0.2	1.7 \pm 0.2	0.005
	GSH	1.3 \pm 0.1	1.1 \pm 0.2	<0.001
PCC	Asc	1.3 \pm 0.2	1.7 \pm 0.2	<0.001
	GSH	1.39 \pm 0.08	1.28 \pm 0.09	0.002

significant ($p = 1.8 \times 10^{-5}$). Figure 2 shows the test-retest data for Asc in the PCC by age group. Test-retest repeatability was smaller than between person variance. [Asc]_{brain} were higher in a few elder subjects than any of the other subjects.

Discussion: The 17% lower OCC [GSH]_{brain} in the elder cohort measured herein is smaller than previously measured with anticipated confounding by T_2 , consistent with faster metabolite relaxation in elder subjects³. The higher [Asc]_{brain} in the elders is analogously consistent. It is yet to be determined whether [Asc]_{brain} can be quantified reliably using short-echo time spectroscopy at fields lower than 7 T.

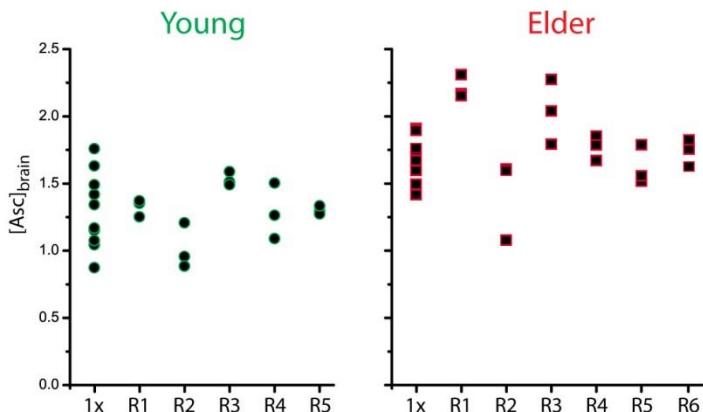
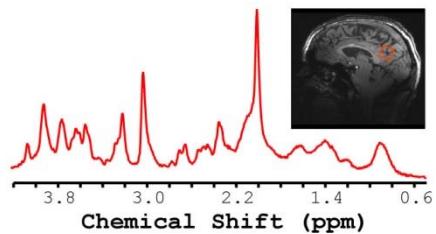



Figure 2. [Asc]_{brain} in PCC of individual young and elderly subjects including retest values.

Results: Figure 1

illustrates the high data quality achieved in this study. Table 1 shows that Asc concentration ([Asc]_{brain}) was higher and GSH concentration ([GSH]_{brain}) lower in elder subjects in both brain regions. The Asc difference in the PCC was the most

significant ($p = 1.8 \times 10^{-5}$). Figure 2 shows the test-retest data for Asc in the PCC by age group. Test-retest repeatability was smaller than between person variance. [Asc]_{brain} were higher in a few elder subjects than any of the other subjects.

Conclusion: This unprecedented demonstration that [Asc]_{brain} is generally higher in the elderly, as well as extraordinarily high in the PCC of some elder individuals has important implications for ongoing development of vitamin C based prevention and treatment of cognitive decline¹⁰. This study demonstrates utility of short-echo time ^1H MRS at ultra-high field to: investigate the mechanisms of cognitive decline, contribute a biomarker pertinent to cognitive decline, and monitor treatment response.

References: 1. MF Beal *et al.* Ann Neurol 2005, 2. U Emir *et al.* NMR Biomed 2011, 3. M Marjanska *et al.* PLoS One 2013, 4. H Tsukaguchi *et al.* Nature 1999, 5. G Adriany *et al.* MRM 2008, 6. GJ Metzger *et al.* MRM 2008, 7. I Tkac *et al.* MRM 2001, 8. R Gruetter, I Tkac MRM 2000, 9. SW Provencher MRM 1993, 10. FE Harrison *et al.* Nutrients 2014.

Acknowledgements: R01AG039396, P41 EB015894, P30 NS076408, S10 RR026783, and W.M. Keck Foundation.