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Target audience The present work targets investigators with an interest in quantitative CPMG measurements of capillary
networks in muscle tissue.

Purpose Recently, remodeling of microcirculation due to skeletal
muscle denervation or aging has been examined.' Also, blood
transverse relaxation rate was shown to increase with inter-echo
time 75 of Carr-Purcell Meiboom-Gill (CPMG) sequences due to
proton spin diffusion around cap|llar|es that contain erythrocytes with
paramagnetic deoxyhemoglobm The resulting susceptibility
differences of capillaries and surrounding tissue are used to provide
a means of quantifying microstructural parameters such as mean
capillary radius and diffusion constant D.

Methods Capillaries are considered in Krogh's supply model °
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In close analogy to ® the correlation function enables to quantify AR, through
correlation time t = R,%/D and susceptibility-dependent frequency shift dw.

Results To determine T, = 1/R. from a single spin-echo experiment, it is assumed that spin-echo magnetization Msg
decays mono-exponentially such that Rs(71g5) = -In(Msg(7180))/ T150- Figure 2 illustrates the dependence of R, on 7y, for
CPMG signals for a specmc set of parameters, and comparisons with results of the Gaussian approximation, ® the strong
collision approximation, " and experimental results from Kennan et al. y|eId a good agreement. Furthermore, results for
multi spin-echo R, were fitted to experimental data of Damon et al. ® who examined excised plantaris muscles of Sprague-
Dawley rats at By= 4.7 T (Fig. 3). Resulting model parameters are given in the legend of Fig. 3 and, for D=2 umz/ms, the
capillary radius follows as R, = 0.92 + 0.08 um.

Discussion & Conclusion Model behavior of the CPMG relaxation rate and limiting cases agree well with
approximations and experimental data from the literature (Fig.2,3) which, thus, support the validity of the model. However,
predlct|ons for rat muscle capillary radius underestimate the radius ~1.5-2.5 pm " most likely due to postmortal blood
loss."”” The presented model can be used to evaluate mean capillary diameters and/or proton spin diffusion constants
around capillaries based on measurements of CPMG T, relaxation time.
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