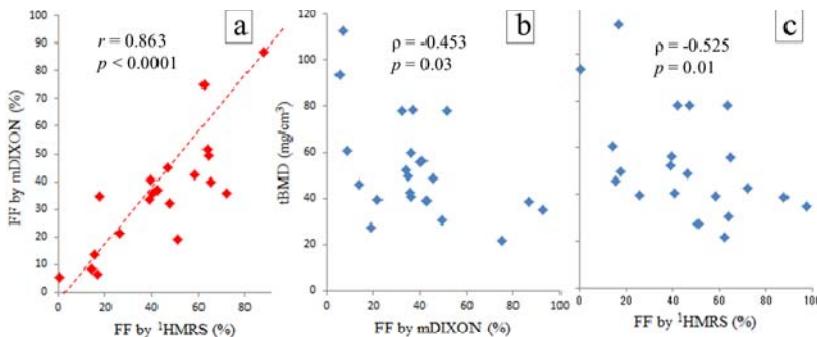


Vertebral bone marrow fat content measured by MRI associated with lower bone mineral density: a human cadaver study

Miyuki Takasu¹, Yuji Akiyama¹, Ryuji Akita¹, Kazushi Yokomachi¹, Yoko Kaichi¹, Shuji Date¹, Masatoshi Honda², and Kazuo Awai¹

¹Diagnostic Radiology, Hiroshima University Hospital, Hiroshima, Hiroshima, Japan, ²Philips Electronics, Tokyo, Japan

Target audience: Diagnostic radiologists


Purpose: Adiposity is known to increase with age; however, recent studies have indicated that a shift in stem cell lineage allocation toward adipogenesis and away from osteoblastogenesis may contribute to age-related bone loss¹. Clinical studies using different methods including magnetic resonance spectroscopy (MRS), to assess marrow fat have found a negative correlation with bone mineral density (BMD) and a positive correlation with prevalent vertebral fracture². However, no validation data on the relationship between marrow fat obtained by a clinically available fat-quantification method and BMD in an in vitro study are currently available. Therefore, the present cadaveric study was conducted in order to validate the relationships among vertebral marrow fat, BMD, and bone strength.

Methods: Fresh human L1, L2, and L3 vertebral bodies were obtained from 10 adult cadavers (age range, 72–90 years). The vertebrae were scanned by 3-T MRI (Ingenia; Philips Healthcare) and 64-section MDCT (VCT; GE Healthcare). Each vertebra was scanned with a bone mineral reference phantom to obtain tissue BMD (tBMD) by MDCT. The MR imaging protocol included a sagittal, coronal, axial T1-weighted fast spin echo sequence to prescribe the spectral acquisition box. Single-voxel MRS was acquired in vertebral bodies using a stimulated-echo acquisition mode (STEAM) sequence (TR, 2000 ms; TE, 9.5), each with 128 signal averages (NSA), bandwidth \pm 1000 Hz, and 1028 data points. Spectral data were obtained from the central 10-mm-thick voxel ($2 \times 1.5 \times 1 \text{ cm}^3$). After phase, baseline, and frequency shift correction, the following 2 peaks were fitted using SpectroView software (Philips Healthcare): the water peak at 4.67 ppm and the fat peak at 1.3 ppm (the bulk CH₂ methylene protons). From the area under each peak, the bone marrow fat (FF by ¹H MRS) was defined as fat/(fat + water) \times 100%. Axial images for a six-echo mDIXON with T2* corrections and a multi-peak model for fat were obtained using the parameters for the 3D fast gradient echo mDIXON sequence (flip angle, 3°; slice thickness, 2.5 mm; matrix, 128 \times 143; NSA, 1; FOV, 200 \times 175 mm; TR/ΔTE = 12/1.25 ms). The mDIXON fat fraction (FF by mDIXON) was expressed as fat/(fat + water) \times 100%, and it was obtained pixel by pixel from the same central area of 2 \times 1.5 cm² as that of ¹H MRS in the central four slices (i.e., 10 mm thickness) using mDIXON-Quant software (Philips Healthcare).

Scanning parameters for MDCT were 120 kVp, 750 mA, and 64 \times 0.625 collimation, resulting in a voxel size of 200 \times 200 \times 160 μm^3 . Finite element modeling (FEM) and microstructural analysis were performed using a 3D image analysis system (RATOC System Engineering). Failure load and trabecular microstructural parameters including trabecular thickness (Tb.Th) and degree of anisotropy (DA) were calculated.

Pearson's correlation coefficients between FF by mDixon and ¹H MRS were calculated. The relationships among tBMD, trabecular indices, and FF by mDixon and ¹H MRS were evaluated using Spearman's correlation coefficient (ρ).

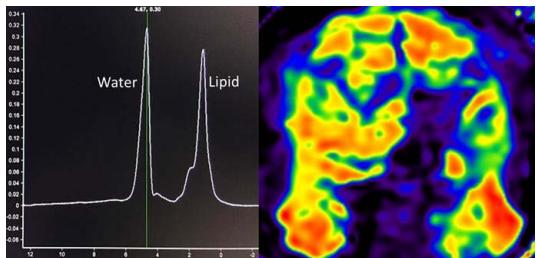
Figure 1. Pearson's correlation coefficients between FF by mDixon and ¹H MRS (a) and relationships between tBMD and FF by mDixon (b) and ¹H MRS (c).

Table 1. Correlation coefficients for fat fractions, tissue BMD, and trabecular indices.

Parameter	FF by mDIXON		FF by ¹ H MRS	
	ρ	p	ρ	p
tBMD (mg/cm ³)	-0.453	0.03	-0.525	0.01
Morphology				
BV/TV (%)	-0.416	0.06	-0.335	0.15
Tb.N (/mm ³)	-0.289	0.20	-0.202	0.39
Tb.Th (μm)	-0.548	0.01	-0.476	0.03
Tb.S (μm)	0.176	0.45	0.061	0.80
Structure model index	0.464	0.03	0.390	0.09
Euler's number	0.477	0.03	0.423	0.06
DA	0.496	0.02	0.643	<0.01
Mechanics				
Failure load (N)	-0.368	0.10	-0.602	<0.01

Discussion: The present findings demonstrate that the mDixon correlates well with the gold standard ¹H MRS method for quantifying of bone marrow fat content. This finding is consistent with previous reports on liver and pancreas³. The present data suggest that the mDIXON can be used in clinical applications as an alternative to the more time-consuming ¹H MRS. However, mDIXON yielded consistently lower fat values when compared to ¹H MRS. This could be due to systematic underestimation by the current algorithm of mDIXON-Quant software. In this study, higher marrow fat was associated with lower tBMD in the cadaveric spine. This result is concordant with a previous report⁴ that compared trabecular BMD and FF by ¹H MRS. Our study demonstrated that this relationship can also be assessed by the clinically relevant mDIXON technique. The present findings confirm an earlier report that showed MDCT-derived compressive strength of the spine was negatively associated with FF by ¹H MRS (5). In the present study, compressive strength was not significantly related with FF by mDIXON. This may currently limit the use of mDixon when aiming at detection of subtle change of bone strength in the spine.

Conclusion: Fat fraction by mDIXON correlated well with that of ¹H MRS for quantification of bone marrow. Fat fraction by mDixon was underestimated compared to ¹H MRS. There was a negative correlation between marrow fat and tissue BMD. This relationship can also be assessed by the mDIXON technique. Further study is needed to assess the feasibility of using mDIXON for quantification of vertebral marrow fat *in vivo*.


References: (1) Moerman EJ, et al. Aging Cell. 2004;3:379–389. (2) Sheu Y, Cauley JA. Curr Osteopor Rep. 2011;9:67–75. (3) Livingstone RS, et al. Magn Reson Mater Phy (2014) 27:397–405. (4) Schwartz et al. J Clin Endocrinol Metab. 2013;98:2294–2300.

Results: Fat fractions were 38.3% (standard deviation (SD), 24.1%) by mDIXON and 46.0% (SD, 26.5%) by ¹H MRS. Values of FF assessed with mDIXON correlated with those from ¹H MRS (Figure 1a, Figure 2, $r = 0.863$, $p < 0.0001$). Fat fractions were negatively associated with MDCT-derived tBMD (Figure 1b and 1c, $\rho = -0.453$, $p = 0.03$ for mDIXON; $\rho = -0.525$, $p = 0.01$ for ¹H MRS).

MDCT/FEM-derived failure load was negatively associated with FF by ¹H MRS ($\rho = -0.466$, $p = 0.04$), but not with FF by mDIXON.

Among the MDCT-derived trabecular indices, Tb.Th and DA were significantly associated with FFs by both of mDIXON and ¹H MRS. The structure model index and Euler's number were significantly associated only with FF by mDIXON.

Figure 2. Representative bone marrow spectrum with individual peaks for lipid and water after fitting (Left) and the axial fat fraction image of L2 obtained by mDIXON (Right).

