

High resolution T_{1p} -mapping of articular cartilage in the wrist at 3T

Joep van Oorschot¹, Mark Gosselink¹, Fredy Visser², Alexandra de Rotte¹, Peter Luijten¹, and Dennis Klomp¹
¹University Medical Center Utrecht, Utrecht, Utrecht, Netherlands, ²Philips Healthcare, Best, Noord-Brabant, Netherlands

Purpose

Perform high resolution T_{1p} -mapping of articular cartilage in the wrist at 3T.

Background

T_{1p} -mapping is a promising quantitative technique to detect cartilage damage at an early stage, at which tissue damage might be reversible. The T_{1p} relaxation is sensitive to the slow motion interactions between macromolecular protons and bulk water, and describes relaxation while the magnetization is in the rotating frame, in the presence of a so-called spin-lock pulse. It has been shown that T_{1p} is sensitive to changes in proteoglycan content in cartilage¹. Several studies have shown that the T_{1p} relaxation time enables early detection of cartilage damage in the knee^{2,3}. Where the cartilage layer in the knee is 2-3 millimeters thick, the articular cartilage layer in the wrist is thinner and therefore more difficult to image this small cartilage layer. Here we test the feasibility of high resolution T_{1p} -mapping mapping of articular cartilage at 3T.

Methods

Three healthy subjects (23±2 years) were scanned on a 3T Philips scanner (Achieva TX, Philips Healthcare, Best, The Netherlands). Subjects were placed feet first in a supine position with the eight element SENSE phased array receive coil alongside the body.

A high resolution anatomical image was acquired using a multi-slice turbo spin-echo sequence to obtain contrast between bone, cartilage and synovial fluids: TE/TR = 44/5000 ms, resolution = 0.2 x 0.2 mm, slice thickness = 1 mm, FOV = 90x90 mm², flip angle = 90 degrees, NSA = 2, SENSE = 2.5. T_{1p} -mapping was performed using a T_{1p} -prepared 3D FFE sequence. 4 images with different spin-lock (SL) preparation times with an amplitude of 500 Hz were acquired (SL = 1, 12, 24, 48 ms). Each SL pulse consists of 2 continuous RF pulses with opposite phase to compensate for B1 variations, and a refocusing pulse between the spin-locking halves to compensate for B0 errors⁴. Other parameters were: TE/TR = 5.3/10 ms, resolution = 0.25x0.25 mm, slice thickness = 1 mm, FOV = 90x90x47 mm³, flip angle = 8 degrees, 99 TFE shots, NSA = 1, SENSE = 4, scan time 4 min. per scan. Analysis: T_{1p} -maps were calculated by pixelwise fitting of a mono-exponential decay function in Matlab.

Results

High resolution anatomical images and T_{1p} -maps were acquired at 3T (figure 2). The T_{1p} -relaxation time in the articular cartilage in healthy subjects was 57 ± 2 ms.

Discussion

Currently T_{1p} -mapping is mainly applied to assess cartilage degeneration in the knee. However, here we have shown the feasibility of high resolution T_{1p} -mapping of articular cartilage in the wrist. Despite the fact that T_{1p} -mapping requires long spin-lock pulses that require a high specific absorption rate (SAR), the proposed protocol is applicable on a standard clinical 3T scanner. This method could easily be incorporated in standard clinical practice, and is a promising technique to detect cartilage damage at an early stage, at which tissue damage might be reversible.

Conclusion

High resolution T_{1p} -mapping of the wrist at 3T is feasible, and a promising technique to assess early cartilage damage in the wrist.

References

¹Akella S. et al. MRM 2001 ²Menezes et al. MRM 2004 ³Peers S et al. Clin.J.Sports.Med. 2014 ⁴Borthakur et al. MRM 2007

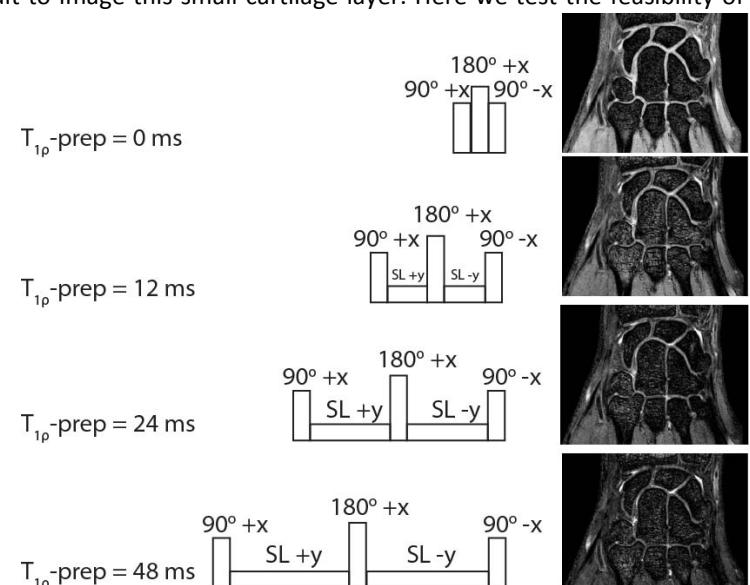


Fig. 1: T_{1p} -mapping method: 4 images were acquired with increasing SL preparation pulse length

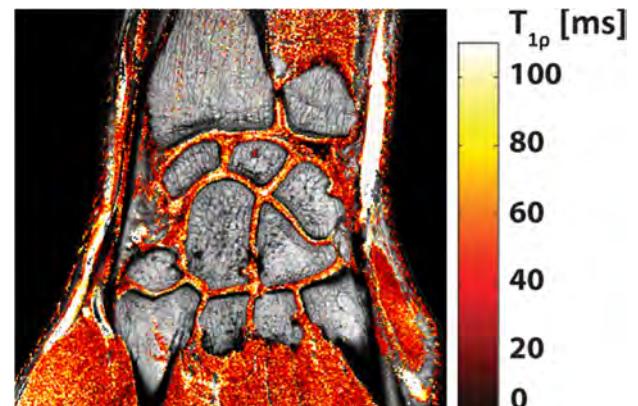


Fig. 2: High resolution anatomical image with an overlay T_{1p} -map in a healthy subject at 3T