Importance of Biexponential T2* and Partial Volume Effect Corrections on Quantification of Sodium Concentrations and

Fixed Charge Density of Articular Cartilage with ²³Na-MRI at 7T

Lasse P. Räsänen¹, Stefan Zbyn², Miika T. Nieminen^{3,4}, Eveliina Lammentausta³, Xeli Deligianni^{5,6}, Oliver Bieri⁵, Siegfried Trattnig², and Rami Korhonen¹

Department of Applied Physics, University of Eastern Finland, Kuopio, Finland, ²MR Centre-High Field MR, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria, ³Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland, ⁴Department of Radiology, University of Oulu, Oulu, Finland, 5 Division of Radiological Physics - Department of Radiology, University of Basel Hospital, Basel, Switzerland, 6 Merian Iselin Klinik, Basel, Switzerland

Target Audience: Researchers aiming to apply sodium MRI in articular cartilage research

Purpose: Quantification of sodium (23Na) concentration and fixed charge density (FCD) with 23Na-MRI are dependent on the postprocessing steps and corrections applied to measured ²³Na signal intensity (SI). Here we demonstrate how the correction for relaxation times and the correction of signal attenuation due to partial volume effect (PVE) affect the calculated ²³Na-concentrations

and thus FCD of articular cartilage of a knee joint.

Methods: The ²³Na imaging of the knee joint was performed in an asymptomatic volunteer with an optimized 3D-vTE- spoiled GRE (SPGR) -sequence^[1] at 7T (23 Na-MRI: TR = 11 ms, TE₁ = 1.42 ms, flip angle (θ) = 33°, resolution of 1.5 x 1.5 x 2.8 mm³). All 23 Na-images were corrected for B₁ inhomogeneity by calculating the correction maps using a cylindrical phantom filled with ²³Na solution. The SI of manually segmented tibial and femoral tissue (S_{xy}) were corrected with factors obtained from SPGR signal equations using a) T1 and monoexponential T2*[2] (T1 = 20 ms, T2* = 9.1 ms)^[3] or b) T1 and biexponentially analyzed T2* (T1 = 20 ms, T2*short = 0.9 ms, $A_{short} = 0.34$, T2*long = 13.3 ms, $A_{long} = 0.66)^{[3,4]}$. The biexponentially corrected signal (S₀) was further divided with PVE-correction factors (PVE_{cf}, Eq. 1) obtained by determining the mean tibial and femoral cartilage thickness ($x_{tibia} = 2.8 \pm 0.9$ mm, $x_{femur} = 2.5 \pm 0.8$ mm) from 3D-DESS images (TR/TE = 7.81/2.62 ms, isotropic resolution of 0.34 x 0.34 x 0.34 mm³) and fitting them to a function describing the attenuation of signal (Fig. 1a). [5] Average water fraction (f = 0.75) of the cartilage tissue was also taken into account in all methods. [4] The corrected SIs of cartilage tissue were fitted to a ²³Na calibration curve (linear fit to mean SI of four calibration phantoms corrected for T1 and monoexponential T2* (²³Na = 100-250 mM) and mean background noise (²³Na = 0 mM)) to obtain the corresponding 23 Na concentrations (Fig. 1b). $^{[6]}$ FCD was calculated with respect to 23 Na – concentration of synovial fluid ([23 Na $_{sf}$] = 150mM): FCD = [23 Na $_{sf}$] 2 / [23 Na (x,y)] - [23 Na (x,y)]. $^{[6]}$

$$S_{0}(x,y) = S_{xy}(x,y) * \frac{1 - \cos\theta * \left(e^{-TR}/T1\right)}{\left(1 - e^{-TR}/T1\right) * \sin\theta \left(A_{short} * e^{-TE_{1}}/T2 * short + A_{long} * e^{-TE_{1}}/T2 * long\right)} * \frac{B_{1}(x,y)}{f * PVE_{cf}} (Eq. 1)$$

3mm resolution[5 1 2 3 4
Cartilage thickness, x (mm) a) [Na] = 1.87*S₀-11.04

Fig 1: (a) Signal attenuation with respect to tissue thickness (adopted from Moon et.al 2013)^[5]. (b) Sodium calibration curve (phantom and noise

Results: The 23 Na concentrations of tibial and femoral cartilages using monoexponential T2* correction were (mean \pm SD, all slices) 107 ± 31 and 98 ± 34 mM (Fig. 2a). The biexponential T2* correction of signal increased ²³Na to 141 ± 40 and 129 ± 43 mM (up to +33%, Fig. 2b), respectively. Biexponential T2* correction combined with PVE correction resulted in 251 \pm 68 and 236 \pm 78 mM (up to +179%, Fig. 2c) ²³Na concentrations and FCDs of -168 ± 83 mM and -157 ± 92 mM (Fig. 2d), respectively. The low ²³Na concentrations of monoexponentially and biexponentially T2* corrected data resulted mainly in positive FCD values.

Discussion and Conclusion: Importance of taking into account the biexponential T2* values and the signal attenuation due to PVE of ²³Na MRI were investigated in determining the ²³Na-concentration and FCD of tibial and femoral cartilage. The ²³Na concentrations calculated in this study were in agreement with previously reported ²³Na concentrations (240mM – 270mM)^[2,6] only after applying both the biexponential T2* and PVE corrections to ²³Na SI. Also in order to determine the fixed charge density (FCD)^[6] of articular cartilage, both biexponential T2* and PVE corrections were needed to reach adequate ²³Na concentrations. These results suggest that the biexponential decay of T2* and especially the signal attenuation due to PVE are important for correct evaluation of ²³Na concentration in knee cartilage even at high field strength (7T) and with images of fair resolution (in-plane 1.5 x 1.5mm, slice thickness 2.8mm).

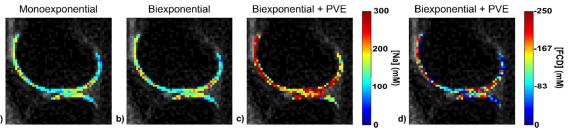


Fig 2: Sodium maps of tibiofemoral cartilages from a mid-sagittal slice of the knee calculated using (a) monoexponential T2* SI correction and (b) biexponential T2* SI correction. (c) Sodium and (d) FCD -maps with biexponential T2* and PVE corrections.

References:[1] Deligianni, X. et al. Magn Reson Med 70 (5), 1434-39. 2013. [2] Wheaton, A.J. et al. Radiology 231, 900-5. 2004. [3] Madelin, G. et al. NMR Biomed. 530-537. 2012. [4] Madelin, G. et al. Radiology 268, 481-91. 2013. [5] Moon, C.H. et al. J. Magn. Reson. Imaging 38, 1063-1072. 2013. [6] Shapiro, E.M. et al. Magn. Reson. Med. 47, 284-291, 2002,