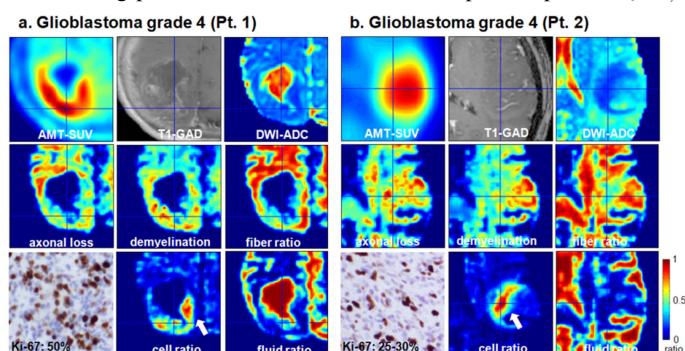


Isotropic Diffusion Spectrum Imaging Constrained by Independent Component Analysis with a Ball and Stick Model to Assess Cellularity of Brain Tumors


JEONG-WON JEONG^{1,2}, Csaba Juhász^{1,3}, Sandeep Mittal^{3,4}, Edit Bosnyák¹, and Diane C Chugani^{1,2}

¹Pediatrics and Neurology, Wayne State University, Detroit, MI, United States, ²Children's Hospital of Michigan, Detroit, MI, United States, ³Karmanos Cancer Institute, Detroit, MI, United States, ⁴Neurosurgery and Oncology, Wayne State University, Detroit, MI, United States

Targeted audience: Clinical researchers using diffusion tensor imaging in brain tumors. **Purpose:** Recently, an independent component analysis with ball-stick model (ICA+BSM)¹ was proposed to solve an intra-voxel crossing fiber problem in clinical diffusion tensor imaging (DTI) data, typically sampling the displacement of water diffusion at a q-space single shell with relatively low angular resolution (e.g., b-value =1000 s/mm² and number of encoding directions ≤ 15). The present study investigates whether the ICA+BSM analysis can be combined with isotropic diffusion spectrum imaging (IDSI) technique² in order to assess the degree of cellularity in tumor-infiltrated white matter tissues in clinical DTI applications.

Methods: The present study included 7 patients presenting with histologically verified WHO grade II-IV gliomas. All MRI scans were performed on a 3T Philips scanner equipped with an eight-channel head coil. For IDSI, DTI data were gathered at repetition time (TR) = 10,870 ms, echo time (TE) = 108.9 ms, field of view (FOV) = 224 cm, 128 \times 128 acquisition matrix, 2 mm thickness using 15 isotropic gradient directions with b-value = 1000 s/mm², one b = 0 acquisition, and number of excitations = 1. Apparent diffusion coefficient (ADC) images were acquired at 2 b-values of 0 and 1000 s/mm² with all other imaging parameters the same as described above for DTI. As a part of the clinical MRI protocol, conventional imaging sequences were acquired for pre- and post-contrast T1-weighted image and axial FLAIR image. To demarcate the proliferating tumor region in each patient, amino acid positron emission tomography (PET) using α -[¹¹C]methyl-L-tryptophan (AMT)³ was performed with 3.7 MBq/kg AMT tracer injection. AMT standardized uptake value (SUV) images were calculated by dividing the average tracer concentration in tissue at 30-55 min post-injection by the ratio of injected activity and patient weight. Regions with increased AMT-SUV in the lobes encompassing the tumor were defined as areas showing at least 36% higher AMT SUV as compared to mean AMT-SUV in contralateral cortex³. In high AMT uptake region, which is highly sensitive to differentiate actively proliferating glioma from necrotic regions, the number of crossing fibers (K_{opt} up to 3), fractional ratios ($f_{j=1, \dots, K_{opt}}$), and orientations of K_{opt} - crossing fibers ($e_{k=1, \dots, K_{opt}}$) were determined using ICA+BSM and then used to facilitate the numerical complexity of model selection and non-linear optimization to estimate isotropic diffusion spectrum ($f_{k=K_{opt}+1, \dots, K_{opt}+L}$) in the j^{th} -diffusion gradient measurement,

$S_{j=1,2, \dots, 15}(x,y,z): S_j \cong \sum_{k=1}^{K_{opt}} f_k e^{-|\vec{b}_j| \lambda_{||k} e^{-|\vec{b}_j|(\lambda_{||k} - \lambda_{\perp k}) \cos^2(\cos^{-1} \frac{r_j \cdot e_k}{r_j \| e_k \|})}} + \sum_{k=K_{opt}+1}^{K_{opt}+L} f_k e^{-|\vec{b}_j| d_k}$ where a set of parameters $\{e_k, K_{opt}\}$ was fixed in the overall fitting process. The fractions of anisotropic components, $\{f_{k=1, \dots, K_{opt}}\}$ were initialized by the solution of ICA+BSM and then optimized with other parameters: axial diffusivity of the k-th anisotropic component ($\lambda_{||k}$), radial diffusivity of the k-th anisotropic component ($\lambda_{\perp k}$), a spectrum of isotropic components, $\{f_{k=K_{opt}+1, \dots, K_{opt}+L}\}$ using generalized pattern search algorithm under the equality constraint of $\sum_{k=1}^{K_{opt}+L} f_k = 1$.

Figure 1. Results of AMT-PET, T1-GAD, ADC, axonal loss ($\sum_{k=1}^{K_{opt}} \lambda_{||k} / K_{opt}$), demyelination ($\sum_{k=1}^{K_{opt}} \lambda_{\perp k} / K_{opt}$), fiber ratio ($\sum_{k=1}^{K_{opt}} f_k$), Ki-67 cell labeling, cell ratio ($\sum_{d_k=0}^{d_k=0.0009} f_{d_k}$), and water ratio ($\sum_{d_k=0}^{d_k=0.0030} f_{d_k}$) for two GBM grade 4 patients.

derived cell ratio yielded a much higher accuracy of 0.969 in conventional receiver operating characteristic curve analysis performed in the seven grade II-IV gliomas. **Discussion and Conclusion:** By combining AMT-PET with IDSI-MRI to measure restricted isotropic diffusivity in the framework of ICA+BSM, the present study demonstrates the potential clinical use of a new, refined imaging tool to evaluate the degree of cellularity associated with brain tumor proliferation. **References:** 1. Jeong JW, Asano E, Yeh FC, et al. Independent component analysis tractography combined with a ball-stick model to isolate intra-voxel crossing fibers of the corticospinal tracts in clinical diffusion MRI. Magn Reson Med. 2013;70:441-53. 2. Wang Y, Wang Q, Haldar JP, et al. Quantification of increased cellularity during inflammatory demyelination. Brain 2011;134(Pt 12):3590-601. 3. Juhasz C, Chugani DC, Muzik O, et al. In vivo uptake and metabolism of alpha-[¹¹C]methyl-L-tryptophan in human brain tumors. J Cereb Blood Flow Metab. 2006; 26(3):345-57. 4. Kamson DO, Mittal S, Robinette NL, et al. Increased tryptophan uptake on PET has strong independent prognostic value in patients with a previously treated high-grade glioma. Neuro Oncol. 2014 Apr 1. doi: 10.1093/neuonc/nou042.

d_k indicated the discrete value of isotropic diffusivity equally sampled at L-bins ranging from 0 to 0.0030 mm²/s. The sum of total isotropic diffusion spectrum restricted from 0 to 0.0009 mm²/sec was defined as cell ratio quantifying hypercellularity and compared with ADC value for the comparison. **Results:** Representative examples of AMT-SUV, T1-GAD, ADC, and IDSI-derived parameters including axonal loss ($\sum_{k=1}^{K_{opt}} \lambda_{||k} / K_{opt}$), demyelination ($\sum_{k=1}^{K_{opt}} \lambda_{\perp k} / K_{opt}$), fiber ratio ($\sum_{k=1}^{K_{opt}} f_k$), cell ratio ($\sum_{d_k=0}^{d_k=0.0009} f_{d_k}$), and water ratio ($\sum_{d_k=0}^{d_k=0.0030} f_{d_k}$) are shown in two glioblastoma (GBM) patients (Fig. 1). As marked by white arrows, the IDSI-derived cell ratio detected the cluster of voxels in the region showing increased AMT SUV and decreased ADC values of both GBM patients. Compared with ADC, which provided a moderate accuracy of 0.457 to detect proliferating tumor cells in the active tumor region, IDSI-