

Clinical Assessment of B₁⁺ Inhomogeneity Effects on Quantitative Prostate MRI at 3.0 T

Xinran Zhong^{1,2}, Novena Rangwala¹, Steven Raman¹, Daniel Margolis¹, Holden Wu^{1,2}, and Kyunghyun Sung^{1,2}

¹Radiological Sciences, University of California Los Angeles, Los Angeles, CA, United States, ²Biomedical Physics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, United States

Target Audience: Clinicians and physicists interested in quantitative multi-parametric MRI for prostate cancer.

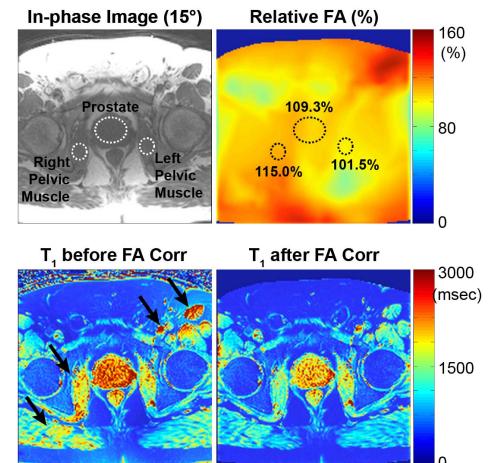
Purpose: Dynamic contrast-enhanced MRI (DCE-MRI) has an important role in multi-parametric MRI for prostate cancer detection and characterization. A primary step in the pharmacokinetic modeling analysis includes conversion of signal intensity curves into contrast agent concentration curves, which requires knowledge of the pre-contrast T₁ (T₁₀) values. Variable flip angle (VFA) imaging is commonly used for T₁ measurements since it can provide fast volumetric T₁ mapping [1], however, it heavily depends on the set of flip angles used, and therefore is sensitive to any flip angle variation. Transmit RF (B₁⁺) field inhomogeneity creates the flip angle variation, which tends to be 30 - 50% across the abdomen at 3T [2]. In this work, we measure B₁⁺ variation in the pelvis using the reference region VFA method [3] and evaluate the impact on the estimated T₁ values in prostate and pelvic muscle with and without compensating for B₁⁺ variation in a total of 108 prostate patients at 3T.

Methods: Experiments were performed on two 3.0T systems (TIM Trio and Skyra, Siemens) in a total of 108 men undergoing clinically indicated prostate MRI, ranging in age between 48 and 87 years (age = 65.4 ± 7.8 years and mass = 82.0 ± 13.5 kg). Local IRB and informed consent was obtained. All MRI scans were feet first. A body coil was used for RF transmission, and the automatic pre-scan was used to calibrate RF transmission. A circular polarization (CP) mode was used for Trio (n = 18), and an elliptical polarization (EP) mode was used for Skyra (n = 90).

A 3D SPGR sequence with a dual-echo bipolar readout was used and TEs were chosen to be in- and out-of-phase (TE1 = 1.23ms and TE2 = 2.46ms) at 3T. A 2-point Dixon fat-water separation algorithm was used to generate fat- and water-only images [4], and B1+ maps were further calculated using RR-VFA [3] in prostate and in-house software (Matlab R2013, Osirix 5.9, Pixmeo SARL).

Maps of relative flip angle (rFA) as a percentage were calculated by dividing the actual flip angle by the nominal flip angle, and T₁ maps were calculated with and without FA correction. Regions of Interest (ROI) were manually drawn on the prostate, left and right muscle in the pelvis, and we computed rFA and T₁ before and after FA correction, averaged over these ROIs (Fig 1). Paired t-tests and f-tests were performed to compare the means and standard deviations of rFA and T₁.

Results and Discussion: Qualitative assessment (Fig 1) showed that T₁ estimation was improved following FA correction.


Statistical results in different tissues from 108 prostate patients are shown in Table 1. The average rFA was 104.5 ± 8.0% in the prostate, ranging from 70.2% to 121.6%, which indicated that the FA correction is crucial to achieve more accurate quantitative results. The difference of mean T₁ between the left and right pelvic muscle was 143ms before FA correction and was reduced to 27ms after the FA correction; the standard deviations of all T₁ estimates were reduced by half after FA correction, resulting in a more uniform T₁ value for each tissue (p = 9.77×10⁻⁹). The reduction in these values gives more confidence in T₁ correction results.

The average estimated T₁ value in prostate is reduced from 2422ms to 2209ms with FA correction, which may be a more accurate estimation in prostate T₁.

The rFA and T₁ values were also compared between two RF transmission modes: EP mode - Skyra and CP mode - Trio (Fig 2). From the box plots, a significant difference of B₁⁺ characteristics can be clearly seen. Skyra has relatively higher rFA while Trio has lower rFA, which leads to inconsistency between scanners in estimating T₁ values. The average value of prostate T₁ between scanners differed by 601ms, and the difference was significantly reduced to 65ms after FA correction. Paired t-tests were applied to data between different scanners, and the p value decreased from 1.22×10⁻⁵ to 2.78×10⁻¹ after correction, showing a more uniform prostate T₁ value after FA correction. Since an important application for quantitative imaging is to compare results from different scanners during follow-up studies, FA correction is necessary for accurate T₁ estimation.

Conclusion: We have measured B₁⁺ inhomogeneity and the T₁ value in 108 prostate MRI exams and have shown improved T₁ measurements in both prostate and pelvic muscles. The FA correction provides a more uniform T₁ value for each tissue and significantly reduces the inconsistency between different scanners. Since the RR-VFA method does not require additional scan time, it is recommended to use RR-VFA to correct T₁ mapping for 3T prostate MRI.

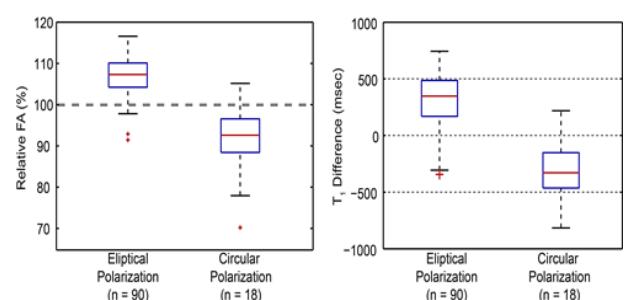

References: [1] Deoni et al., MRM 2003. [2] Azian et al., JMRI 2010. [3] Sung, et al., MRM 2013. [4] Ma et al. MRM. 2004.

Fig 1: A representative example of inaccuracies of T₁ measurements due to B₁⁺ inhomogeneity.

Table 1: relative FA values and T₁ values obtained from prostate and both pelvic muscles

	rFA (%)	T ₁ before FA corr (msec)	T ₁ after FA corr (msec)
Prostate	104.5 ± 8.1	2421.9 ± 411.3	2209.3 ± 232.6
Left Pelvic Muscle	106.3 ± 6.7	1701.1 ± 206.6	1506.2 ± 103.7
Right Pelvic Muscle	110.7 ± 7.2	1834.5 ± 267.2	1479.2 ± 105.2

Fig 2: Comparison of relative FA (a) and difference of prostate T₁ (b) between two types of RF transmission.