

GLUTAMATE DEHYDROGENASE INHIBITION REDUCES GLUTAMINE CONVERSION INTO 2HG IN IDH1-MUTATED CANCER CELLS AS DETECTED BY ^{13}C MRS

Tom Peeters¹, Vincent Breukels¹, Corina van den Heuvel², Anna Navis², Sanne van Lith², Jack van Asten¹, Remco Molenaar³, William Leenders², and Arend Heerschap¹

¹Department of Radiology and Nuclear Medicine, Radboudumc, Nijmegen, Netherlands, ²Department of Pathology, Radboudumc, Nijmegen, Netherlands, ³Department of Cell Biology and Histology, Academic Medical Center, Amsterdam, Netherlands

Introduction: The cytosolic enzyme isocitrate dehydrogenase (IDH1) is involved in NADP⁺ dependent oxidative decarboxylation of isocitrate into α -ketoglutarate (α KG) while producing NADPH (fig.1). α KG is an important intermediate for lipid synthesis and cell proliferation whereas NADPH is important for biosynthesis of metabolites that protect cells from reactive oxygen species. More than 70% of all low grade gliomas exhibit a heterozygous R132H mutation in IDH1¹ leading to a loss in isocitrate binding capacity and a conversion of α KG into D-2-hydroxyglutarate (2HG) by NADPH oxidation instead². Depletion of the α KG and NADPH pools imposes metabolic stress and hampers cell proliferation. Although there are indications for increased dependence on glutaminolysis of IDH1^{R132H} cells³, multiple compensatory anaplerotic mechanisms that these tumor cells develop to survive are currently being studied⁴. Since it is hypothesized that in IDH1^{WT/R132H} cells most 2HG is synthesized from glutamate-derived α KG⁵ our goal was to investigate the effect of glutamate dehydrogenase (GDH1) inhibitor epigallocatechin gallate (EGCG)⁶ on the metabolic conversion of glutamine into 2HG in IDH1 mutant human colorectal cancer cells (HCT116) with ^{13}C MRS.

Materials and methods: The heterozygous IDH1^{WT/R132H} genotype was created by a knock-in of a IDH1^{R132H} allele by rAAV targeting technology GENESIS. Parental HCT116^{WT/WT} cells were used as control. Cells were maintained in DMEM containing 10% FBS, 5.6 mM glucose and 4mM glutamine. 17 hours prior to extraction the glutamine was replaced by an equivalent of 1- ^{13}C -labeled glutamine. EGCG-treated cells were supplied with 100 μM EGCG 2 hours prior to and during ^{13}C -glutamine incubation. Before extraction all cells were placed on ice and washed once with cold PBS. Subsequently cells were scraped in an ice-cold 50:50 MeOH:H₂O solution containing formic acid as reference compound. The cell suspension was centrifuged for 10 minutes at 1000 x g at 4°C. Supernatant was dried in a Savant SpeedVac evaporator and redissolved in deuterated water. All samples contained the equivalents of approximately 18-10⁷ cells and were measured on a Bruker Avance III 500MHz spectrometer. Proton-decoupled ^{13}C spectra were acquired with a pulse-acquire experiment (TR = 5s, 90° flip angle, NS = 4150). Additional ^1H spectra were acquired to study total metabolite pool sizes (TR = 8s, 90° flip angle, NS = 64). ^{13}C spectra were fitted with a Lorentzian shape using Bruker Topspin software. Fits were corrected for cell number and reference compound concentration, and spectra were further analyzed with SpinWorks 4 (University of Manitoba, Winnipeg, Canada). For a proliferation assay HCT116 cells were seeded in 6-wells dishes at low density (60 cells/well) and subsequently treated with EGCG (20 μM). After two weeks colonies were stained and counted with an inverted microscope. All counts were normalized to the control groups.

Results: From the ^{13}C MR spectra it follows that 1- ^{13}C -glutamine was converted via glutamate and α KG into 1- ^{13}C -2HG (fig.1 and 3). Labeled 2HG was only detected in the IDH1^{WT/R132H} cell line (181.35 ppm). GDH1 inhibition with EGCG resulted in a significant decrease in IDH1^{WT/R132H} HCT116 cell proliferation compared to the non-treated control cells (fig.2) and reduced the production of 1- ^{13}C -glutamine derived 2HG with almost 50% (fig.3). The pool sizes of 1- ^{13}C -labeled glutamine and glutamate were large in all samples whereas their 2-5C resonances were in the range of intensities that originate from natural abundant ^{13}C , implying no label scrambling occurred. Label that entered the TCA cycle via 1- ^{13}C - α KG was removed by oxidative decarboxylation. Furthermore, in both parental and mutated cell lines EGCG induced a decrease in total glutamate and an increase in total glutamine concentrations as observed in the ^1H spectra (fig.4).

Discussion: We conclude that the metabolic pathway from glutamine to 2HG is important for the generation of 2HG in IDH1^{WT/R132H} HCT116 cells since the amount of glutamine-derived 2HG was considerably reduced due to the administration of EGCG. Even though multiple enzymes are co-responsible for the conversion of glutamate into α KG (e.g. BCAT1, ALT1 and AST1), we showed that the inhibition of GDH1 has a severe effect on cell proliferation. Therefore, EGCG could be a promising therapeutic agent for IDH1-mutant tumors that inhibits glutamate-dependent metabolism and exposes tumor cells to reactive oxygen species.

References

1. Yan, H., et al., New England J of Med, 2009. **360**(8).
2. Dang, L., et al., Nature, 2009. **462**(7274).
3. Seltzer, M.J., et al., Cancer Res, 2010. **70**(22).
4. Izquierdo-Garcia, J.L., et al., PLoS One, 2014. **9**(9).
5. Van Lith, S.A.M., et al., BBA - Rev on Cancer, 2014. **1846**(1).
6. Li, C., et al., J Biol Chem, 2006. **281**(15).

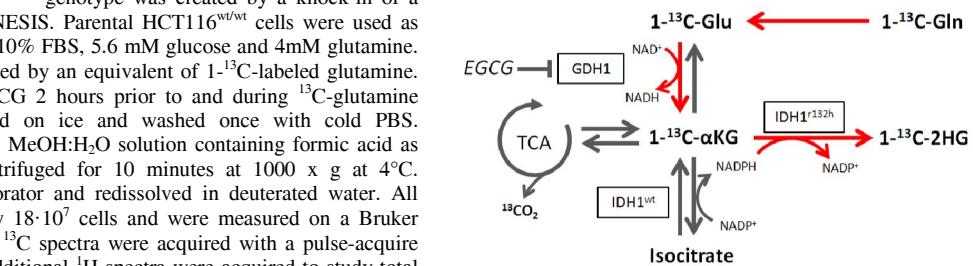


figure 1 | schematic overview of the observed metabolic pathway. IDH1 'metabolism' is shown in red.

HCT116 cell proliferation

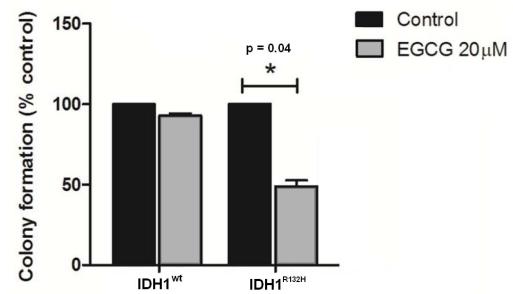


figure 2 | cell proliferation in IDH1^{WT/WT} and IDH1^{WT/R132H} cells, with and without EGCG treatment (n=2).

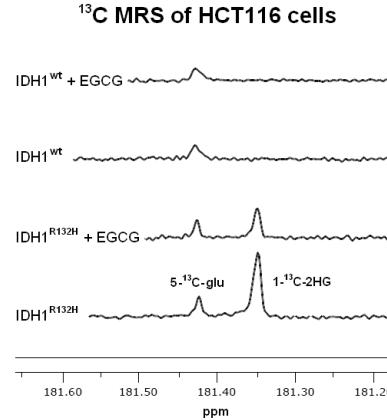


figure 3 | proton-decoupled ^{13}C spectra showing decreased accumulation of 1- ^{13}C -2HG after EGCG treatment.

^1H MRS of HCT116 cells

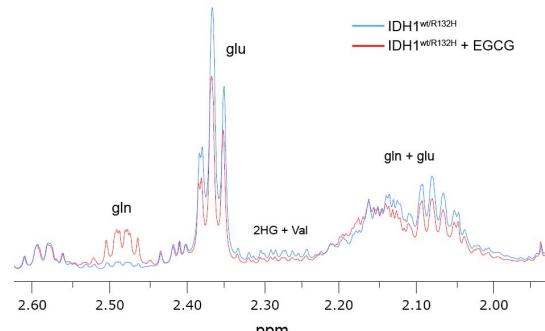


figure 4 | ^1H spectra showing glu and gln total pool size alterations caused by EGCG treatment.