Correlation of Quantitative MRI-derived Tumor Characteristics with Histology in Breast Cancer Murine Models

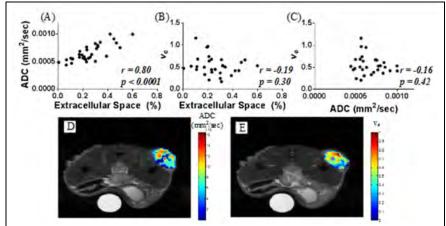
Anna G Sorace^{1,2}, Stephanie L Barnes^{1,2}, Jennifer G Whisenant^{1,2}, Mary E Loveless¹, and Thomas E Yankeelov^{1,2}

¹Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, United States, ²Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, United States

Purpose

The goal of this study is to identify the relationship between the apparent diffusion coefficient (ADC, from diffusion weighted MRI, DW-MRI), the extravascular extracellular volume fraction (v_e , dynamic contrast enhanced MRI, DCE-MRI), and histology measurements. We report DCE- and DW-MRI preclinical studies obtained from two breast cancer murine models to examine the relationship between *in vivo* measurements of ADC and v_e and the actual extracellular space (%EC) quantified by *ex vivo* histology.

Methods


Nude athymic mice were injected with either 10^7 HER2+ BT474 (n=15) or triple negative MDA-MB-231 (n=20) breast cancer cells and tumors grew to an average volume of 250 mm³. Tumors were treated with either Herceptin (10 mg/kg), Abraxane (10 or 25 mg/kg), or saline, and animals were imaged prior to any treatment to obtain DCE- and DW-MRI data at baseline (t_0), during treatment (t_1), and on the endpoint day (t_2). Diffusion-weighted images were acquired using a standard pulsed gradient spin echo sequence with three b values (150, 500, and 800 s/mm²) with the following acquisition parameters: TR/TE = 2000/30 ms, gradient duration = 3 ms, gradient interval = 20 ms, two signal excitations, 15 (1 mm) thick slices, acquisition matrix = 64×64 , and FOV = $28 \times 28 \times 15$ mm³. Dynamic T_1 -weighted images were acquired using a spoiled gradient echo sequence at a temporal resolution of 12.8 seconds for 20 minutes with the following parameters: TR/TE = 100/2.1 ms, $\alpha = 25^{\circ}$, NEX = 2, acquisition matrix = 64×64 , FOV = $28 \times 28 \times 15$ mm³, and 15 (1 mm) slices. Baseline images were acquired, then a bolus of Gd-DTPA (0.05 mmol/kg) was administered. A voxel-based DCE-MRI analysis, employing the standard Tofts model and a population AIF¹, was performed to return parametric maps of v_e . After imaging acquisitions, the tissue was resected and evaluated by histological analysis. Tissue samples were embedded and sectioned so as to obtain a central slice, which was then stained using H&E. The slides were scanned using a digital brightfield microscope (20x), and thresholding techniques were utilized to segment the image based on H&E staining and calculate the percent extracellular space (%EC).

Results

For both BT474 and MDA-MB-231, the central slice median ADC exhibited a significantly positive correlation with corresponding %EC as measured by H&E (p = 0.03, p = 0.01, respectively) at t_2 . Conversely, median v_e showed no correlation with %EC (p = 0.06 and p = 0.89 for BT474 and MDA-MB-231 tumors, respectively) at t_2 . Additionally, there was no correlation discovered between ADC and v_e with either whole tumor analysis or central slice analysis (p > 0.05). Combination data (Figure 1) reveals a highly significant correlation between ADC and %EC (r = 0.80, p < 0.001); however, no correlations were seen between v_e and %EC, and v_e and ADC.

Discussion

The use of biomarkers available from quantitative DCE- and DW-MRI to assess tumors and their response to therapy has shown considerable potential^{2,3}. However, successful application and clinical translation of these techniques demands that they be properly qualified. While ADC correlates well with the %EC, this data adds to the growing body of literature which suggests that v_e derived from DCE-MRI is not a reliable biomarker of %EC. The lack of a correlation between v_e and histology could potentially be attributed to the modeling approaches commonly used in DCE-MRI. For example, the Tofts models often return unphysiological values of v_e

Figure 1. Breast cancer preclinical data reveals a **(A)** positive correlation between ADC and %EC. No correlation was seen between **(B)** v_e and %EC, and **(C)** v_e and ADC. Panels D and E present representative maps of ADC and v_e , respectively.

because the model does not account for the presence of contrast agent diffusion⁴.

Conclusion

This data suggests that v_e is not a reliable biomarker of the extracellular extravascular space. Conversely, ADC appears to be a reliable method for noninvasively evaluating extracellular space in preclinical breast cancer models.

References

- 1. Loveless et al. Magn Reson Med. 2012; 67:226-36.
- 2. Yankeelov et al. Nat Rev Clin Oncol, 2014: 11:670-80.
- 3. Chung et al. J Med Imaging Radiat Oncol, 2014:5.
- 4. Barnes et al. PLoS One, 2014:9.

Acknowledgments

NCI R01 CA138599, NCI P50 CA098131, NCI P30 CA68485, NCI R25 CA092043, NCI 5T32 CA093240 and NCI U01 CA174706.