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Target audience — Researchers developing tractography analysis tools, especially tools that compute statistics or connectivity analyses on streamlines, as well as end
users of those tools, who should be aware of some potential pitfalls when working with compressed streamlines and streamlines having a large and variable step size.

Purpose — This abstract aims to show that current methods used to analyze and derive metrics from streamlines, also known as Tractometry methods, need to be updated
to work correctly with streamlines with non-equidistant points along them. This update procedure is shown to be straightforward, and the effect of not taking
compression / sampling into account is shown to be important.

Problem statement — Basic tractometry techniques compute metrics and statistics along a streamline by finding the voxels containing each point of the streamline and
using the value of those voxels in further calculations (for example, to compute the mean FA value along a streamline). For streamlines generated using a small and
regular step size, such as those generated by most of the current tractography algorithms, this voxel selection procedure is reasonable because the sampling of voxels
should be regular and correctly cover all the streamline. However, if the step size is too large, or if it varies along the streamline, the points-based voxel selection
technique can be biased, because some voxels may simply be missed. Some tractography algorithms are beginning to generate streamlines with variable step sizes,
because they may decide to locally vary the step size according to some prior information (fODF uncertainty, etc). This kind of streamlines may also be generated when
using the lossy streamline compression method presented in [1]. The main step of this algorithm consists in linearizing the streamlines by removing points that are
almost collinear, up to a specified error threshold. Using a small error threshold of 0.1mm results in datasets that can be from 80% to 95% smaller than the original files,
while being visually indistinguishable from uncompressed streamlines. This allows users to transfer and visualize those files more easily. However, this also implies that
the distance between 2 consecutives points may vary along the streamline, introducing the same kind of bias as with a large step size.

Methods — To overcome the voxel selection bias caused by a variable or large step size, we replaced the normal points-based technique by a Bresenham-style line
integration technique [2, 3]. Instead of simply finding all voxels containing at least one point of the streamline and using those voxels for further computations, our
technique computes the voxels intersected by each segment of the streamlines. All those voxels are then added to the tractometry computations, and the bias is therefore
eliminated. To validate this method, we generated 500k streamlines covering the whole brain using Mrtrix [4]. We then extracted 27 of the main WM bundles using the
TractQuerier [S] with a custom query, and compressed those bundles using the Fibercompression tool (https:/github.com/scilus/FiberCompression) with 7 maximal
error values, ranging from 0.001mm to 1mm. For each error threshold €, as well as for the uncompressed original bundles, we then calculated the mean values of various
diffusion metrics (AD, FA, MD, RD) along the 27 bundles, as well as the number of voxels occupied by those bundles. The mean values and voxel counts were
computed using the basic points-based technique available in Dipy ([6], dipy.org), as well as with our improved segments-based technique [3]. Then, for each bundle B;,
we computed the difference between the “uncompressed” mean and the mean computed on bundle B; for each compression level €. This difference was expressed as a
percentage of the mean value of the uncompressed bundle, and will be called Diff(B;).

Results — Table 1 shows the average of Diff{B;,) for the FA over each error threshold €

in {0.001, 0.01, 0.1, 1}mm, for the default (points-based) and the adapted (segments- 0.001 0.01 0.1 1
based) techniques. As can be seen, the difference between uncompressed and Points- 0,086% 2,206% 6,14% 11,81%
compressed streamlines quickly rises with the error threshold when using the points- based

based method. This can be partly explained because more points are kept in curved | Segments- | 0,00015% 0,00699% 0,13627% 2,23049%
sections of streamlines, where the FA is typically lower than in linear sections. That based

implies that voxels in curved sections will have a more substantial contribution to the  Table 1: Differences between uncompressed and compressed FA,
mean FA value than they should. However, it is clear that using the segments-based averaged over all bundles

technique yields mean values that are nearly identical to those

obtained on uncompressed streamlines, at least for reasonable - Uncompressed 0.01 0.1 1
error values. A difference can still be seen on higher error Points-based 8160 7448 (-8.72%) 4704 (-42.35%) 2331 (-7143%)
thresholds (Imm) because such an error threshold leaves the L Segments-based 8928 8933 (+0.05%) 8922 (-0.06%) 9344 (+4.65%)
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possibility that some segments of a streamline may be shifted
by up to 1 voxel. In that case, the mean FA value will of course
be changed if the new path of that segment goes through a part
of the brain with different FA. Table 2 shows the number of voxels considered to be part of the left
Inferior Longitudinal Fasciculus (ILF) according to the 2 techniques, over various error thresholds. One
can see that a points-based technique greatly underestimates the number of voxels occupied by the
bundle, even in the uncompressed case. This discrepancy between the 2 uncompressed counts is partly
caused by segments of streamlines crossing over parts of a voxel without having a point in that voxel.
This is clearly visible in Figure 1b, where we see that only 5 voxels were selected with the points-based
technique because multiple voxels didn’t have at least one point inside them. Those cases cannot be
detected and accounted for using a points-based technique. On the other hand, Figure 1c shows that the
Bresenham-style technique correctly found all voxels. The astute reader will also notice that the volume
of the bundle compressed with the 0.0lmm and Imm error rates is actually increasing when measured
with the segments-based technique. That is expected, because some streamlines that curve can take a
shortcut for the curve, given a large enough error threshold. If no uncompressed streamline was going
through those voxels, the count will then be impacted.

Table 2: Number of voxels traversed by a streamline for the 2 techniques, for 3 error thresholds

Conclusion — We have shown that is it critically important to adapt Tractometry techniques to enable
them to correctly handle compressed streamlines and different sampling of points along streamlines.
Without this adaptation, all techniques that rely on a points-based analysis of the streamlines will yield
biased, if not simply incorrect, results. Since the size of streamlines datasets is expected to continue
increasing in the coming years (because of better techniques and higher resolution datasets), we expect the use of compressed streamlines will gain more traction. We
also expect that more tractography techniques will be able to generate streamlines with variable step sizes [7], to account for various factors and perform global-
tractography-like algorithms based on a lower number of points. In general, major software tools will have to follow and adapt their techniques to ensure that analyses
ran on those files will still be valid and accurately reflect the underlying streamline structure.

Figure 1: a) compressed streamline, arrows showing
where points are; b) voxels found by the points-based
method; c) voxels found by the segments-based method
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