
Further Evidence of an Orientation Dependence of Magnetization Transfer Parameters from Investigations in Post-Mortem Marmoset Brain

Henrik Marschner¹, Riccardo Metere¹, Stefan Geyer¹, André Pampel¹, and Harald E. Möller¹ ¹Nuclear Magnetic Resonance, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Sachsen, Germany

Target audience. Researchers interested in quantitative magnetization transfer (qMT) and white matter microstructure.

Introduction. Information on myelin can be obtained indirectly from magnetization-transfer (MT) experiments ^[1-4]. Quantification of MT imaging is usually based on a two-pool model consisting of a free water pool "a" and a semi-solid, macromolecular pool "b". Integral part of this model is a lineshape describing the absorption probability of the semi-solid pool, which is often assumed to be super-Lorentzian (SL) ^[3-5]. It was recently found that T_{2b} shows an apparent dependence on Θ , the major orientation of white matter (WM) fibers with respect to B_0 ^[6-7]. To explain this observation, a novel lineshape function was proposed that considers lipid bilayers enveloping a cylindrical axon ^[7]. While this hypothesis yielded reasonable results, it is based on analyzing different voxels of human WM *in vivo*. In the current work, the hypothesis is further evaluated by examining a *post-mortem* monkey brain at different orientations with respect to B_0 , a procedure that allows analyzing the <u>same</u> voxel as a function of Θ .

Methods. $\underline{MRI\ scans:}$ qMTI data were acquired from a *post-mortem* marmoset brain (male, 10 years, 4% PFA immersion fixation) on a 3T Med-Spec 30/100 human scanner (Bruker, Ettlingen, Germany) with a custom-made transceiver Helmholtz coil ^[8]. The sample was placed in a spherical container and submerged in perfluoropolyether. A paraffin mold was used to restrict sample mobility within the sphere. The sample holder could be rotated horizontally with approx. 5° precision. 20 image volumes (222×286×286 μm nominal resolution) were recorded with an MT-prepared 3D FLASH sequence (TR/TE: 35 ms/6 ms; α: 20°; pulsed off-resonance saturation: 10 ms Gaussian pulse; 6 different pulse amplitudes between 942 and 6694 rad/s; 9 offset frequencies between 250 and 30000 Hz). Off-resonance frequencies and amplitudes were chosen by an optimization algorithm ¹⁰. The measurements were repeated for 10 different azimuthal angles covering a 180° rotation in the axial plane (\mathbf{B}_0 orthogonal to the coronal plane). $\underline{MT\ Parameter\ Fitting:}$ All qMT parameters (pool size ratio M_{0b}/M_{0a} , exchange rate R and the longitudinal and transversal relaxation times of each pool) were obtained by non-linear least-squares fitting. Subsequently, the discussion is limited to T_{2b} . A super-Lorentzian absorption lineshape was assumed for fitting consistent with previous work ^[7,9]. Fiber orientation: DTI measurements could not be performed with the current hardware at the desired resolution, which prevented the direct measurement of Θ . Instead, Θ was estimated in selected regions of the corpus callosum (cc), where the fiber orientation follows the structural orientation (for comparison see Fig. 2a). In particular, the fibers run within a plane that is orthogonal to the medial longitudinal fissure. From the orientation of this plane and estimating the fiber pathway within this plane, Θ was calculated by coordinate transformations.

Fig. 1. Histology slice of example brain zooming in the cc (red) with clearly visible orientations of single fibers (a). Coronal slice of the investigated brain with red ROI of analyzed structures(b).

Fig. 2. 2D histograms of T_{2b} as function of the major fiber orientation relative to B_0 comparing previous *in vivo* data in humans ^[7] (**left**) to results obtained in *cc* in post-mortem marmoset brain (**right**; approx.. 1500 voxels) with rotation of the sample.

Results and Discussion. A clear dependence of T_{2b} on the fiber orientation (Fig. 2b) Θ was found, that closely resembles the orientation dependence of T_{2b} of previous human in-vivo data (Fig. 2a) with a peak at approx. 38° .

Conclusion. The observed angular dependence in the *post-mortem* data for highly ordered WM supports the hypothesis of orientation dependence of the RF absorption lineshape that was observed in human brain *in vivo*. Here, variation of the orientation was achieved by rotating the sample in the magnetic field.

References. 1. C. Laule et al. *Neurotherapeutics* 4, 460 (2007). 2. R.M. Henkelman et al. *MRM* 29, 759 (1993). 3. C. Morrison et al. *MRM* 33, 475 (1995). 4. C. Morrison et al. *JMR*(*B*) 108, 103 (1995). 5. H. Wennerström. *CPL* 18, 41 (1973). 6. D.K. Müller et al. *Proc ISMRM* 2996 (2010). 7. A. Pampel et al. *Proc. ISMRM* 392 (2014). 8. R. Müller et al. *Proc. ISMRM* 4366 (2013). 9. D.K. Müller et al. *JMR* 230, 88 (2013). 10. H. Marschner, Proc. ISMRM 22:3336, 2014.

Acknowledgement. Funded by the Helmholtz Alliance ICEMED—Imaging and Curing Environmental Metabolic Diseases and by EU through the 'HiMR' Marie Curie ITN (FP7-PEOPLE-2012-ITN-316716).