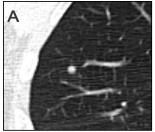
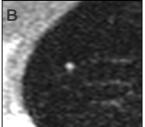
## Detection of Pulmonary Nodules by Ultra-short TE Sequences in Oncology Patients using a PET/MR System

Nicholas Scott Burris<sup>1</sup>, Peder Larson<sup>1</sup>, Kevin M Johnson<sup>2</sup>, Michael D Hope<sup>3</sup>, Spencer Behr<sup>3</sup>, and Thomas A Hope<sup>3</sup>


<sup>1</sup>Radiology, University of California San Francisco, San Francisco, CA, United States, <sup>2</sup>University of Wisconsin–Madison, WI, United States, <sup>3</sup>University of California San Francisco, CA, United States


<u>Purpose</u>: The recent introduction of hybrid PET/MR systems has raised the possibility of combined whole body PET and MR imaging for evaluation of oncology patients; however, feasibility of clinical PET/MR imaging has been traditionally limited by poor MR evaluation the lung parenchyma due to rapid signal decay, low tissue proton density and substantial respiratory/cardiac motion. Several approaches, including zero TE (ZTE) techniques<sup>1</sup>, FSPGR<sup>2,3</sup>, and FSE<sup>4</sup> have been utilized to minimize susceptibility and motion artifacts for pulmonary nodule evaluation. Recently, a free-breathing 3D radial ultra-short TE (UTE) technique has been described for evaluation of structural lung disease (e.g. pulmonary fibrosis)<sup>5</sup>; however, the utility of this sequence for pulmonary nodule evaluation has not yet been investigated. We hypothesized that, given its high spatial resolution and motion minimizing properties, a free-breathing 3D UTE-based technique would be feasible and sensitive for the evaluation of pulmonary nodules in oncology patients.

Methods: Five patients with known pulmonary nodules undergoing clinical PET/CT were enrolled. (3 male, average age

57.8 ± 11.8 y). Primary malignancy was breast carcinoma for two patients, melanoma for two patients, and papillary thyroid cancer for one patient. PET/MR imaging of the thorax was performed on a 3.0 T PET/MR system (investigational only; GE Healthcare, Waukesha, WI) following clinical PET/CT, using the clinically administered fluorodeoxyglucose (FDG) dose. PET/CT (slice thickness 1.25mm) was considered the gold-standard for the determination of nodule presence, size, location and FDG-avidity. Nodules were grouped into categories by short-axis diameter: < 4 mm, ≥4 - <6 mm, ≥6 -<8 mm, ≥8 - <10 mm, ≥10mm. Fissural or pleural nodules and nodules measuring ≤ 2 mm on CT were not included in analysis. Two short echo time (TE) sequences of the lung were performed for each patient: 1) 3D UTE sequence -TE 80 us, TR 2.5 ms, flip angle 4°, 1.25mm isotropic resolution, adaptive bellows gating with efficiency of 40%, scan time ≈ 5:00; 2) ZTE - TE 0 ms, TR 2.2 ms. flip angle 4°, 1.5 mm isotropic resolution, conventional bellows gating with efficiency of 40%, scan time ≈ 4:30. Means ± SD are reported for continuous variables and frequencies for categorical data. Proportions were compared using z-tests and Fisher's exact tests.

<u>Results:</u> A total of 71 nodules were detected by CT, with mean diameter of  $6.3 \pm 2.8$  mm (range: 3-17mm). The frequency of nodules by size category was: 9 nodules <4 mm (13%), 24 nodules 4-6 mm (34%), 17 nodules 6-8 mm (24%), 10 nodules 8-10 mm (14%), 11 nodules  $\geq$  10mm (15%). Sensitivity for nodule detection was 75% overall for UTE and 42% overall for ZTE. Sensitivity of nodule detection by size is tabulated in the adjacent figure. Nodules in the central lung (<2cm from hilar structures) were more likely to be missed by ZTE compared with the mid or





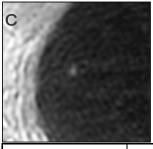



Figure: Example of a 4mm nodule as seen by clinical CT (A), ultra-short TE (B) and zero TE (C) techniques in a patient with a history of metastatic melanoma, demonstrating superior resolution and visual conspicuity of the nodule by the UTE technique.
The nodule was too small to be identified by PET.

|          |        | Sensitivity for Nodule<br>Detection by Size |     |
|----------|--------|---------------------------------------------|-----|
|          |        | UTE                                         | ZTE |
| Overall  | (n=71) | 75%                                         | 42% |
| < 4mm    | (n=9)  | 22%                                         | 0%  |
| 4 - 6mm  | (n=24) | 71%                                         | 42% |
| 6 - 8mm  | (n=17) | 82%                                         | 47% |
| 8 - 10mm | (n=10) | 90%                                         | 40% |
| >10 mm   | (n=11) | 100%                                        | 73% |

peripheral lung (80% vs. 46% missed, p<0.01); there were no differences in detection by location for UTE. Nodules were more likely to be seen by UTE and ZTE sequences if they were PET-avid versus PET negative (100% vs. 63%, p=0.027 for UTE and 83% vs. 33%, p=0.002 for ZTE). Correlation between nodule measurements by CT versus those by UTE and ZTE techniques were excellent (Pearson's coefficients of 0.95 and 0.96 respectively).

<u>Discussion</u>: The UTE sequence showed moderate sensitivity for nodule detection overall (75%), which was higher than overall sensitivity of the ZTE sequence (42%, p<0.001). Sensitivity for larger nodules (≥8mm) was excellent for UTE (95%) but was much lower for ZTE (51%). When considering smaller nodules (4-6mm), sensitivity was moderate for UTE (71%) but quite poor for ZTE (42%). The ZTE sequence particularly struggled in the central lung (detection rate of 20%), but the UTE sequence showed no significant change in detection rate by nodule location. All PET-avid nodules were identified by UTE, however, only 63% were identified by ZTE. These differences are likely due to improved adaptive respiratory gating and a higher spatial resolution of UTE compared to ZTE.

Conclusion: Free-breathing 3D UTE sequences performed well for the detection of pulmonary nodules ≥4mm in size in our small preliminary cohort and outperformed ZTE sequences at all sizes. UTE may be a viable alternative approach to evaluating patients with pulmonary nodules in the future, although continued refinement is warranted.

## References:

- 1. Weiger et al. Magn Reson Med. 2010; 64:1685-1695.
- 2. Chandarana et al. *Radiology*. 2013; 268(3): 874-881.
- 3. Stolzmann et al. *Invest Radiol.* 2013; 48(5): 241-246.
- 4. Schroeder et al. AJR. 2005; 185(4): 979-984.
- 5. Johnson et al. Magn Reson Med. 2013; 70(5): 1241-1250.