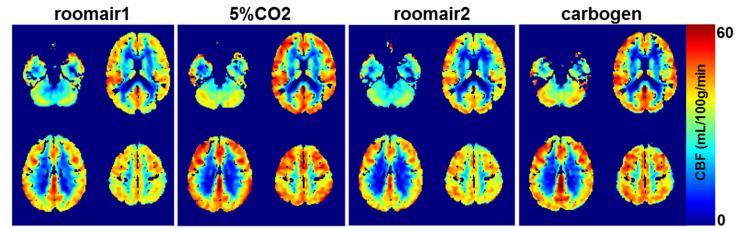
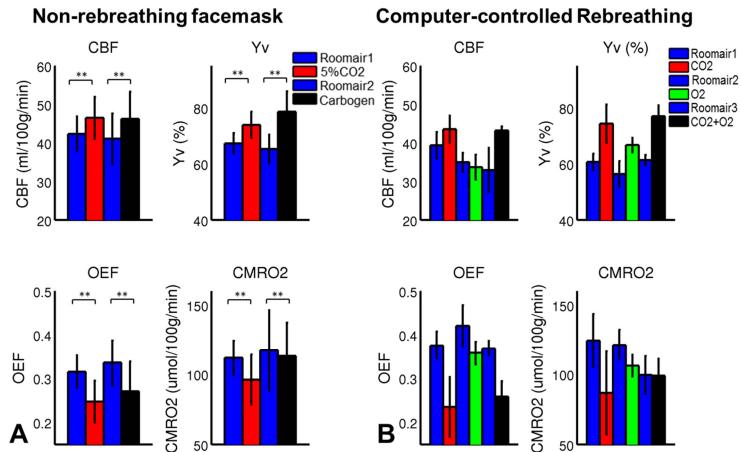


Blood oxygenation, CBF, OEF, and CMRO₂ changes during hypercapnia and hyperoxia using pCASL and TRUST MRI


Jeroen C.W. Siero¹, Carlos C. Faraco², Alex Bhogal¹, Megan K. Strother², Peiying Liu³, Hanzhang Lu³, Jeroen Hendrikse¹, and Manus J. Donahue²
¹Radiology, University Medical Center Utrecht, Utrecht, Netherlands, ²Radiology and Radiological Sciences, Nashville, Vanderbilt University School of Medicine, Tennessee, United States, ³Radiology Advanced Imaging Research Center, UTSouthwestern Medical Center, Texas, United States

Introduction: BOLD and ASL MRI in combination with hypercapnic stimuli are becoming increasingly popular for measuring cerebrovascular reactivity (CVR) in health and disease [1-2]. Hypercapnic stimuli are also frequently used in calibrated fMRI for quantifying neuronally-evoked BOLD responses or for CMRO₂ estimation. A common assumption when interpreting these results is that hypercapnic stimuli are iso-metabolic. Additionally, hypercapnic stimuli may be coupled with hyperoxia, for which the effect on metabolism is less clear [2]. Here we evaluate the assumption that two common hypercapnic stimuli (5%CO₂: 5%CO₂ + balanced room air; and carbogen: 5%CO₂ and 95%O₂) are iso-metabolic using MRI-based measures of changes in venous blood oxygenation (Yv). Additionally, hypercapnic-hyperoxic stimuli will increase arterial and particulary venous pO₂. The degree to which the dissolved oxygen in venous blood plasma binds to dHb depends on the pO₂ in the veins; BOLD data have suggested that this effect increases carbogen-induced BOLD responses by two to three-fold relative to hypercapnic normoxic BOLD responses [2]. A secondary aim was therefore to quantify Yv and oxygen extraction fraction (OEF) during hypercapnic-normoxia, normocapnia-hyperoxia, and hypercapnic-hyperoxia. We investigated these aims separately with a non-rebreathing face mask and also a computer-controlled rebreathing device.


Materials and Methods:

Healthy volunteers (n=10; age=31+/-3yrs) were scanned at 3T (Philips). Yv measurements were performed on the sagittal sinus using TRUST MRI (TR=3s, TI=1.2s, voxel size=3.4x3.4x5mm³, 4 T2 weightings (effective TEs: 0, 40, 80, and 160ms), with a tCPMG=10ms; repeats=2 [3-4]. CBF measurements were performed using pCASL MRI. Acquisition parameters and CBF quantification method follow those in [5]. Post label delay=1.7s, label duration=1.5s, TR=3.9s, measurements=13, spatial resolution=3x3x7mm³, slices=17. For the carbogen condition a blood water T1 reduction from 1.66 to 1.55s was used, which was calculated in separate work by assuming identical gray matter Δ CBF for the 5%CO₂ and carbogen conditions. TRUST and pCASL data were sequentially acquired using a non-rebreathing facemask in the following paradigm: 3min room air (RA1) - 3min 5%CO₂ - 3min room air (RA2) - 3min carbogen. The order of 5%CO₂ and carbogen was randomized between subjects and time was allowed for EtCO₂ and Yv to equilibrate. In additional subjects (N=3), sequential pCASL, TRUST, and phase-contrast (PC) MRI [4], were acquired using a rebreathing device (RespirActTM) which allows targeting of PaCO₂ and PaO₂; hypercapnic-normoxic (+10mmHg PaCO₂), normocapnic-hyperoxic (375mmHg PaO₂), hypercapnic-hyperoxic (+10mmHg PaCO₂, 375mmHg PaO₂) in blocks of 5 min interleaved with periods of room air breathing. To account for the dissolved O₂ for the hyperoxic conditions, we computed the total arterial O₂ content ([O₂]_a), venous O₂ content ([O₂]_v), and pVO₂ using physiological models of O₂ hemoglobin saturation and plasma-dissolved O₂ [6]. This also takes into account the Bohr-effect, effect, for which O₂ binding to Hb is inversely related to the presence of CO₂, by using the measured EtCO₂. Hct values of 0.42 for males, and 0.4 for females were assumed. OEF was computed as ([O₂]_a-[O₂]_v)/[O₂]_a, and CMRO₂=CBF*([O₂]_a-[O₂]_v).

Results & Discussion: Fig1 shows the mean CBF maps for the room air, 5%CO₂, and carbogen conditions. Fig2A shows significant changes in wholebrain CBF, Yv and OEF for 5%CO₂ and carbogen. After correcting for the plasma-dissolved arterial and venous O₂, no significant differences in OEF were found between 5%CO₂ and carbogen (also observed in the RespirAct data). Data suggests a slight increase in OEF for the carbogen, which could be due to the presence of O₂ (Fig2B shows increased OEF also for the hyperoxic condition compared to CO₂). Future work is needed to investigate this further. Significant CMRO₂ decreases from room air were observed only for the hypercapnic-normoxic conditions (5%CO₂ in Fig2A and CO₂ in Fig2B) in line with literature findings [7]. Further, we observed a slight decrease in CMRO₂ for the hyperoxic condition (Fig2B, RespirAct data). The carbogen and hypercapnic-hyperoxic (CO₂+O₂) data (facemask and RespirAct data, respectively) revealed no significant decrease in CMRO₂. This could indicate that carbogen is potentially a more iso-metabolic stimulus. Possible confounds of the carbogen data analysis are the potentially vasoconstrictive properties of O₂ and the changes in blood water T1. However the PC-MRI results using the RespirAct (data not shown) showed no significant decreases in wholebrain CBF for the hyperoxic stimulus. This indicates vasoconstriction might not be a significant confound for these stimuli as has been reported in the PET literature [8]. We believe these findings will be of importance for interpreting calibrated fMRI and BOLD CVR measurements using hypercapnic or hypercapnic-hyperoxic (carbogen) stimuli.

Figure 1. Mean CBF maps (N=10, MNI space) for the room air, 5%CO₂ and carbogen (5%CO₂/95%O₂) conditions. Significant increases in whole-brain (minus ventricles) CBF were observed for the 5%CO₂ and carbogen conditions.

Figure 2. A) Changes in CBF (pCASL), Yv, OEF, and CMRO₂ for hypercapnic (5%CO₂) and hypercapnic-hyperoxic (carbogen, i.e. 5%CO₂+95%O₂) stimuli using a non-rebreathing facemask. **denotes significant difference, p<0.05 ANOVA. B) Changes in CBF (pCASL), Yv, OEF, and CMRO₂ for hypercapnic (CO₂), hyperoxic (O₂) and hypercapnic-hyperoxic (CO₂+O₂) stimuli using a computer-controlled rebreathing mask (RespirActTM). Only significant CMRO₂ changes were observed for the hypercapnic stimuli.