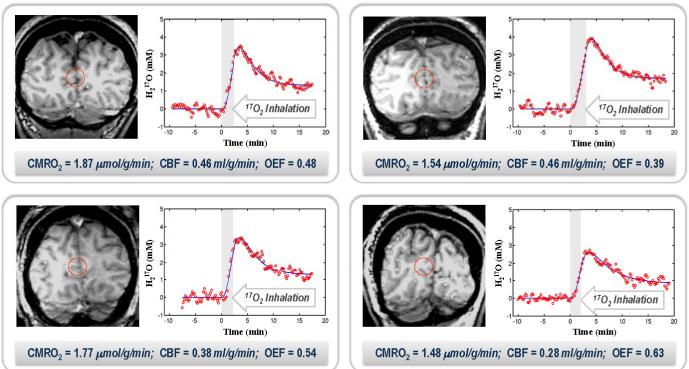


Quantitative and Simultaneous Imaging of CMRO₂, CBF and OEF in Resting Human Brain

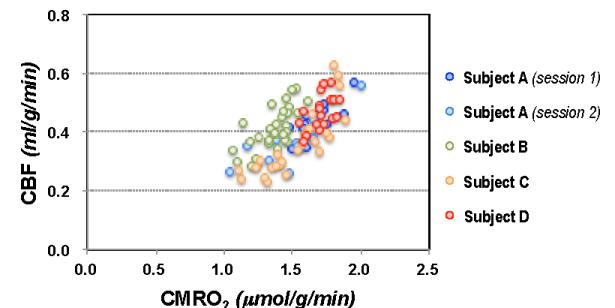
Xiao-Hong Zhu¹, Hannes M Wiesner¹, Byeong-Yeul Lee¹, Ming Lu¹, Kamil Ugurbil¹, and Wei Chen¹

¹CMRR, Department of Radiology, University of Minnesota Medical School, Minneapolis, MN, United States

Introduction Noninvasive and simultaneous imaging of cerebral metabolic rate of oxygen (CMRO₂) and cerebral blood flow (CBF) in human brain is essential for studying brain oxygen metabolism, energetics and function in human health and disease. *In vivo* ¹⁷O MR-based approach is the only alternative to the positron emission tomography (PET) technique for noninvasively and directly determining the regional CMRO₂ in the human brain [1-3]. We have demonstrated that by incorporating the *in vivo* ¹⁷O-MR imaging technique with a simple breathing test and a sophisticated quantification model, three important physiology parameters of CMRO₂, CBF and oxygen extraction factor (OEF) can be simultaneously obtained in the human brain via a brief inhalation of ¹⁷O-labeled oxygen gas [4]. In the present study, this novel ¹⁷O MR imaging technique was applied to assess the regional CMRO₂, CBF and OEF in healthy human subjects under resting state using a 7 Tesla (T) magnet.


Method *In vivo* ¹⁷O-MR spectroscopy imaging (MRSI) experiments were conducted on a 90 cm bore 7T human scanner (actively shielded Agilent magnet and Siemens console) using a passively decoupled surface coil probe consists of a quadrature ¹H coil for anatomic imaging and a single loop ¹⁷O coil (7.5cm diameter) placed underneath the human occipital lobe for collecting ¹⁷O MRSI data. The ¹⁷O MR images were acquired with 3D Fourier series window (FSW) technique (-12 s per image volume, 1.1 cc nominal or 3.5 cc real voxel size) before, during and after a 2-3 minutes inhalation of ¹⁷O₂ (¹⁷O enrichment: 75-92%) gas that was mixed with N₂ as in the normal air [5]. Four normal young volunteers were recruited (age: 22-28 years old, 1 male / 3 female) for the study; one of them was scanned twice at two different days. For each subject, a simple breathing test was performed in addition to the MR measurement to determine the gas exchange rate in the subject's lung [4]. This rate together with other known parameters was used in the previously described quantification model to calculate the CMRO₂, CBF and OEF values in each ¹⁷O imaging voxel [4]. High-resolution 3D-MPRAGE T₁-weighted and proton density (PD) images were acquired (TR=3s, FA=7°, and 1mm isotropic resolution); imaging process including de-noising, co-registration and segmentation was performed based on the ¹H anatomic (T₁/PD ratio) images. The ¹⁷O MRSI voxels were superimposed on the segmented anatomic images to identify the voxel location and determine the fractions of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) in each voxel. All data are presented as mean \pm stdev.

Results Figure 1 displays four data panels obtained from four subjects, respectively. Each panel consists of ¹H anatomic image with identified central voxel location, the corresponding brain H₂¹⁷O water dynamics before, during and after a brief ¹⁷O₂ gas inhalation, and the calculated CMRO₂, CBF and OEF values of the representative voxel. Excellent ¹⁷O-MR sensitivity at 7T, robust and characteristic dynamics of the brain H₂¹⁷O signal changes after introducing ¹⁷O₂ gas, and well-fitted experimental data to the quantification model are clearly illustrated in Fig. 1. The CMRO₂, CBF and OEF values from various MRSI voxels located in the ¹⁷O coil sensitive region were determined and were found to have the following values: CMRO₂=1.51 \pm 0.21 μ mol/g/min; CBF=0.39 \pm 0.10 ml/g/min and OEF=0.48 \pm 0.10 in the resting human brains (over 100 voxels from 4 subjects). Figure 2 shows a strong positive correlation between the resting state CMRO₂ and CBF values observed in different subjects; such correlation is fairly reproducible in the same subject, but varies slightly among different subjects. The measured CMRO₂ values from the similar brain region show substantial inter-subject variation (see Fig.1); and can differ significantly across different brain regions within the same subject. Figure 3 shows the distribution of the CMRO₂ in human brain tissues, in which the CMRO₂ values of various ¹⁷O MRSI voxels in four different subjects are plotted against their gray or white matter fraction (F_{GM} or F_{WM}). Strong dependence of the CMRO₂ on the tissue composition is revealed, which leads to CMRO₂ of 1.97 μ mol/g/min for pure GM and 0.91 μ mol/g/min for pure WM in the occipital lobe of the resting human brain. Interestingly, we also found a consistent and negative correlation between CBF and OEF.


Discussion and Conclusions The present study confirms the applicability and utility of the newly established *in vivo* ¹⁷O-MR imaging technique for studying cerebral oxygen metabolism and perfusion in resting human brain at ultrahigh field strength of 7T. This approach with its simplicity, completely noninvasiveness, superior ¹⁷O sensitivity and accurate quantification model is able to reliably imaging the CMRO₂, CBF and OEF simultaneously with a brief ¹⁷O₂ inhalation and relatively short MR scan. The resulted resting state CMRO₂, CBF and OEF values of the healthy human subjects are in good agreement with the PET literature values [1-2,7]. This novel neuroimaging technique is highly sensitive to differentiate inter-subject variations and tissue-specific differences in regional CMRO₂, CBF and OEF. Therefore, the overall findings of the study suggest that the ¹⁷O-MR based neuroimaging approach can provide an invaluable tool for quantitatively assessing the CMRO₂, CBF and OEF in healthy and diseased human brains.

Acknowledgement NIH grants NS057560, NS041262, NS070839, P41 EB015894, S10 RR026783 and P30 NS076408.

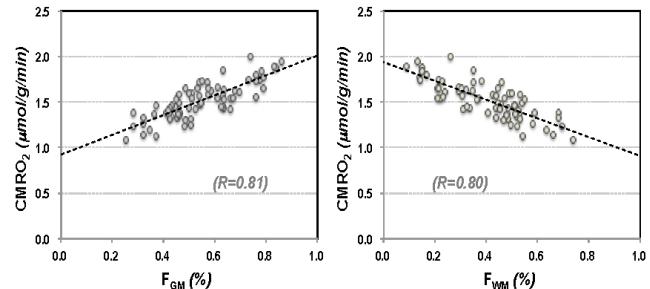

References [1] Jones *et al.* *Br J Radiol* **49**:339-43 (1976); [2] Frackowiak *et al.* *J Comput Assist Tomogr* **4**:727-36 (1980); [3] Zhu *et al.* *PNAS* **99**:13194-13199 (2002); [4] Zhu *et al.* *Proc ISMRM* **22**:3763 (2014); [5] Zhu *et al.* *Proc ISMRM* **14**:409 (2006); [7] Hatazawa *et al.* *ANM* **9**:15-21 (1995).

Figure 1. Anatomic images and the dynamic changes of the H₂¹⁷O water signal during and after a brief ¹⁷O₂ gas inhalation (indicated by a grey bar) obtained from central voxels (red circles) in four resting human brains. The 3D ¹⁷O-MR images were acquired with 12s temporal resolution and nominal voxel size of 1.1cc. The voxel time courses are presented with experimental data (red dots) and corresponding model fitting (blue curves). The calculated CMRO₂, CBF and OEF values in these voxels are displayed at bottom of the panel for each subject.

Figure 2. Correlation of the resting state CMRO₂ and CBF values obtained in four human subjects, one of them was scanned twice on two different days. Each circle represents data from one ¹⁷O-MR imaging voxel, and the data of different subjects or scan sessions is shown in different color.

Figure 3. Resting state CMRO₂ distributions in different human brain tissues. The CMRO₂ values of various ¹⁷O-MR imaging voxels in four different subjects are plotted against the fraction of gray or white matter (F_{GM} or F_{WM}) in each voxel. Strong linear correlation is observed, which indicates an over two times CMRO₂ difference in the pure gray vs. white matters of the occipital region in normal human brain.