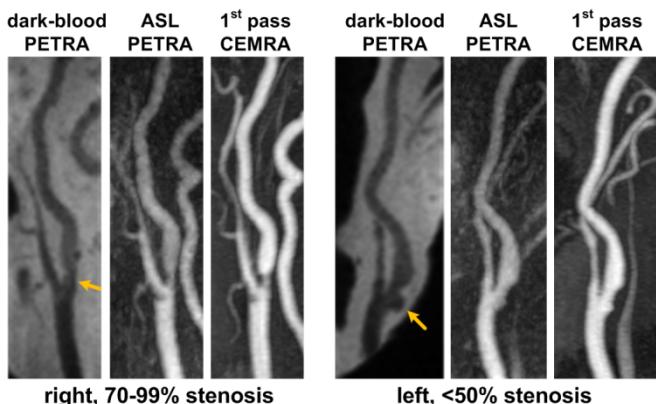
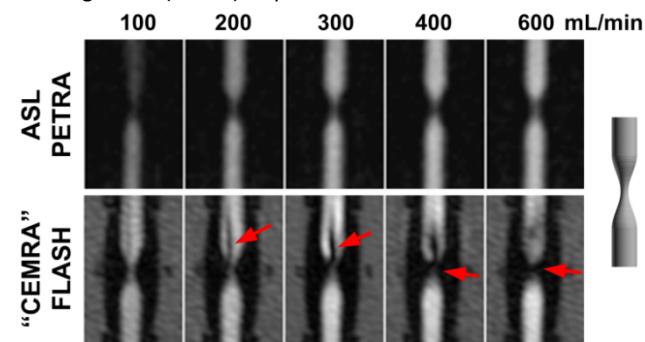


Quiet, Dual-Contrast Ultra-Short Echo Time MRA of the Extracranial Carotid Arteries

Ioannis Koktzoglou^{1,2}, Ian G Murphy^{1,3}, David Grodzki⁴, Shivraman Giri⁵, and Robert R Edelman^{1,3}


¹Radiology, NorthShore University HealthSystem, Evanston, IL, United States, ²Radiology, The University of Chicago Pritzker School of Medicine, Chicago, IL, United States, ³Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States, ⁴Healthcare Sector, Siemens AG, Erlangen, Germany, ⁵Siemens Healthcare, Chicago, IL, United States

Target Audience: Physicians and scientists performing magnetic resonance angiography (MRA) of the extracranial carotid arteries.


Purpose: Magnetic resonance angiography is an accurate diagnostic modality for evaluating stenotic disease of the extracranial carotid arteries. For patients in whom the administration of gadolinium-based contrast agents is contraindicated, time-of-flight MRA is commonly used. However, image quality is variable and only a limited vascular region is depicted. We describe an alternative approach for non-contrast MRA leveraging a quiet, ultra-short echo time 3D point-wise encoding time reduction with radial acquisition (PETRA) sequence that allows for evaluation of the carotid arteries using both bright- and dark-blood projection images.

Methods: Imaging of a severe carotid stenosis in a flow phantom was performed to test the potential of an ultra-short echo time to mitigate signal loss due to turbulence; results were compared to a short-TE (TR/TE = 2.6/1.2s) fast low angle shot (FLASH) sequence used in contrast-enhanced MRA (CEMRA). 5 healthy subjects and 3 patients were imaged using a MAGNETOM Avanto 1.5T MRI system (Siemens AG, Erlangen, Germany) under an IRB-approved protocol. Dual-contrast MRA had $\approx 1\text{mm}^3$ isotropic spatial resolution. For dual-contrast MRA, two data sets were acquired using a prototype 3D PETRA sequence¹. For one data set, a 10cm-thick inferior saturation region was applied every 100ms to suppress the arterial signal. PETRA sequence parameters were: TR/TE/flip angle = 4.6ms/0.07ms/5°, 320 matrix, 320mm field of view, 25,000 views, 2min 9sec per data set. For bright-blood MRA (referred to as arterial spin-labeled (ASL) PETRA), the two PETRA data sets were subtracted and maximum intensity projections (MIP) were created. For dark-blood MRA, minimum intensity projections (minIP, 15-25mm thick) were created from the arterial-saturated PETRA data set. Arterial-to-background contrast-to-noise ratio (CNR) was computed.

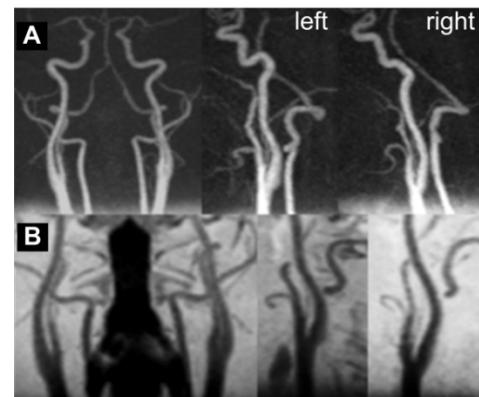

Results: In the flow phantom study, the bright-blood ASL PETRA contrast eliminated signal loss near the severe stenosis caused by turbulence (Fig. 1). Bright-blood ASL PETRA and dark-blood PETRA contrasts provided excellent depiction of the extracranial carotid bifurcations in a volunteer (Fig. 2). Bright-blood ASL PETRA depicted the arteries from the level of the common carotid artery to the circle of Willis. Imaging in patients with stenosis showed excellent correlation between bright-blood ASL PETRA and CEMRA (Fig. 3). Because of the ultra-short TE, susceptibility artifacts were absent. On minimum intensity projections of the dark-blood PETRA data, there was no confounding low signal from ligaments, tendons, and fat/water interfaces. However, overestimation of the luminal diameter on the dark-blood minIP images was observed, probably due to the presence of hypointense calcification at the carotid bulb/bifurcation (arrows in Fig. 3)². This artifact was not present in the MIP images of the bright-blood ASL PETRA data set. CNR values for the dark-blood and bright-blood image sets were 10.6 ± 5.6 and 13.8 ± 3.3 , respectively.

Fig 3. Images obtained in a patient with 70-99% stenosis of the right internal carotid artery.

Fig. 1. Flow phantom data showing elimination of signal loss due to intravoxel dephasing (arrows) with ASL PETRA. Flow rates and phantom geometry are shown at top and right, respectively.

Fig. 2. Bright-blood ASL (A) and dark-blood (B) PETRA contrasts showing the carotid arteries.

Discussion and Conclusion: Dual-contrast PETRA-based MRA permits evaluation of the extracranial carotid arteries with both bright- and dark-blood contrasts, and demonstrates immunity from intravoxel dephasing and susceptibility artifacts. The use of an ultra-short echo time is essential for creating dark-blood projection images, since it ensures that all tissues except saturated blood (and air) have substantial signal and thus are not apparent with minimum intensity projection processing². Further study is needed to determine potential diagnostic utility and the impact of arterial calcification on the dark-blood minimum intensity projection images.

References: 1. Grodzki DM et al. Magn Reson Med. 2012;67:510-518. 2. Edelman RR et al. Magn Reson Med. 2014; doi: 10.1002/mrm.25320.