Chemical Exchange Saturation Transfer (CEST) Imaging with Double Angles and Varying Duty Cycles Ke Li^{1,2}, Hua Li^{1,3}, Zhongliang Zu^{1,2}, Junzhong Xu^{1,2}, Jingping Xie^{1,2}, Bruce M Damon^{1,2}, Mark D Does^{1,2}, John C Gore^{1,2}, and Daniel F Gochberg^{1,2} Institute of Imaging Sciences, Vanderbilt University, Nashville, TN, United States, Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States, ³Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, United States Target Audience: Investigators who are interested in chemical exchange saturation transfer (CEST) imaging. Purpose: CEST has emerged as a novel imaging contrast with the capability of detecting metabolites in biological tissues. Conventional CEST contrast is obtained by calculating the magnetization transfer ratio asymmetry (MTR_{asym}). In in vivo studies, the measured CEST contrast is influenced by the MT asymmetry of the macromolecular proton pool and nuclear overhauser enhancement (NOE). This work describes the development of a new metric, named magnetization transfer ratio with double angle and varying duty cycles (MTR_{double.vdc}), based on pulsed-CEST and previously developed chemical exchange rotation transfer^{1,2}. A π pulse train at a high duty cycle (dc) (83.8% in this work) is used to maximize exchange effects; while a 2π pulse train at a low dc (20.95% in this work) is used to minimize such effects. The MT and direct saturation effects are approximately the same, so the difference in the label signals provides a contrast that is primarily from chemical exchange. The equivalency of this approach to an ideal continuous-wave (CW) experiment is demonstrated. Methods: Numerical simulations: A three-pool model of tissue protons containing macromolecular, free water and amide protons with a chemical exchange rate of 50 Hz was adopted. To investigate the dependence of pulsed-CEST on irradiation flip angle (iFA) and dc, iFA was varied between 120° and 900°, stepped by 30°, and dc was varied between 20.95% and 83.8% at five levels. The average saturation power was set at 0.6 µT. To demonstrate the proportionality of MTR_{double.vdc} vs. MTR_{asym}(CW), model system parameters were varied systematically within broad ranges. The dependence of the ratio on average irradiation power and B₁⁺ field inhomogeneities was also simulated. A four-pool tissue model with MT asymmetry and NOE included was also simulated. Data acquisition: All data were acquired on a 9.4T Agilent MRI scanner. All data were acquired with a spin-echo echo-planer-imaging sequence. A creatine/agar phantom served as a three-pool model with no MT asymmetry. The in vivo data were acquired from male Fischer 344 rats. Pulsed- (2π with dc of 20.95%, π with dc of 83.8%) and CW-CEST data were collected at average power of 1 uT. B₀ maps were determined using the WASSR method³. Data processing: All data were corrected with B₀ maps on a pixel-wise basis and interpolated to steps of 1 Hz in RF offsets. ## **Results and Discussion:** Fig. 1 shows the simulated reference and label signals of pulsed-CEST vs. iFA and dc. The signals of a CW sequence at the same average irradiation power were also plotted. It can be seen that the difference between the signals using a π pulse at a high dc and 2π pulse at a low dc will provide the maximum CEST contrast, and their signals at the negative offsets are approximately the same. The ratio of MTR_{double,vdc} vs. MTR_{asym}(CW) is ~60% for all simulated parameter ranges, and at non-optimal powers. In the phantom, the obtained ratio was generally in agreement with the simulations. Fig. 2 shows MTR_{double,vdc} and MTR_{asym}(CW) from a ROI defined in the gray matter in the rat brain in vivo. It can be seen that with the presence of MT asymmetry and NOE, the measured MTR_{asym}(CW) values are negative. However, MTR_{double.vdc} always yields positive contrast. Representative amide, amine, and two NOE contrast maps are shown in Fig 3. Conclusion: The new metric, MTR_{double,vdc}, takes the advantage of the dependence of pulsed-CEST label signal vs. iFA and dc, while the MT and spillover effects are generally only a function of average irradiation power. The approach enhances the contrast in CERT (previously acquired at constant dc¹), eliminates the possible contamination from neighboring exchanging sites seen in three-offset fitting methods⁴, and does not have the strong model dependence seen in lineshape fitting methods^{5,6}. Numerical simulations indicate that this contrast is approximately proportional to what the CW contrast would be in ideal conditions for a wide range of model parameters, indicating that this approach could also be potentially extended to analytical approaches for quantitative CEST imaging. The measured MTR_{double.vdc} in phantoms and rat brain in vivo demonstrate the feasibility of this approach in practical imaging. For imaging metabolites at low frequency offsets, such as creatine-CEST and glycol-CEST, or to obtain contrast at higher average irradiation powers, the MTR_{double,vdc} approach may be more challenging. Another challenge lies if B₁⁺ field inhomogeneities are significant, because they cause strong Amide(+3.5ppm)(%) oscillations around the π pulse. References: 1. Zu, MRM 2011. 2. Zu, MRM 2013. 3. Kim, MRM, 2009. 4. Jin MRM 2013. 5. Zaiss, JMR, 2011. 6. Scheidegger, Neuroimage 2014. Acknowledgements: Funding support: NIH R01 EB017767, R01CA184693. NOE(-1.6ppm)(%) grav matter of a rat brain. Fig. 3 Representative Amide, amine, and two Fig. 2. The MTR_{double 706} and MTR_{aysm}(CW) in NOE contrast maps obtained from the MTR_{double} vdc approach.