Highly-accelerated chemical exchange saturation transfer (CEST) measurements with linear algebraic modeling (SLAM)

Yi Zhang¹, Hye-Young Heo¹, Dong-Hoon Lee¹, Shanshan Jiang¹, Paul Bottomley¹, and Jinyuan Zhou^{1,2}

Division of MR Research, Department of Radiolgov, Johns Hopkins University, Baltimore, Maryland, United States, 2F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, United States

Audience Scientists or clinicians interested in obtaining fast CEST measurements for differentiating brain pathology. **Purpose**

CEST imaging has potential value for differentiating cancer¹⁻³, stroke^{4,5}, Parkinson's⁶ and other human disease⁷. On the other hand, CEST imaging requires acquisition of saturation images at multiple frequencies and is slow. However, almost all human applications, e.g. for tumor grading¹⁻³, Parkinson's disease⁶, creatine kinetics⁷, and studying brain development, utilize compartmental average CEST indices. Here, the recently-proposed Spectroscopy with Linear Algebraic Modeling (SLAM) method^{8,9} is adapted for ultrafast CEST MRI to directly reconstruct compartmental average indices or z-spectra. We demonstrate the feasibility of SLAM CEST with effective acceleration factors of up to 45-fold in brain tumor studies.

Methods

The central idea of SLAM^{8,9} is to group voxels defined on scout MRI into C compartments, and reduce the number of k-space phase encodes to a subset of C chosen from central k-space. The compartment-average spectra obtain by solving the C simultaneous equations for the resulting subset of acquisitions. CEST SLAM was validated with CEST data from 6 brain tumor patients studied on a 3T Philips MRI system. CEST was performed with 4x200ms block saturation pulses ($B_1=2\mu T$) offset up to ± 14 ppm from water at 0.5ppm steps, and WASSR¹¹ B_0 correction (2x200ms saturation at 0.5 μT). One or 2 CEST MRI slices were acquired per patient using 2D TSE (turbo factor=45; SENSE¹⁰ factor=2; FOV=212x186 mm; resolution=2.2x2.2mm; slice thickness=4.4mm; 7 data sets in total). FLAIR, T₁- and T₂-weighted clinical MRI were also acquired.

The k-space data were Fourier Transformed (FT) and unfolded in the phase encoding direction with the SENSE¹⁰ algorithm for the "standard FT" reconstruction. "Standard FT" z-spectra for each voxel were generated after B₀ correction¹.

For "SLAM CEST" reconstruction, the CEST slice was co-registered with a clinical MRI, and segmented into different

compartments (Fig. 1a). Compartmental Fig. 1: Five-compartment segmentation of a brain tumor image (a). Blue FT zaverage z-spectra were then reconstructed directly by the SLAM method^{8,9} using the segmentation information and subsets of central k-space corresponding to various acceleration factors of R= 1-45. SLAM z-spectra, with both SENSE and B₀ corrections incorporated, were compared with "standard FT" z-spectra averaged over the same compartments.

Results and Discussion

Fig. 1(a) shows segmentation of a coregistered T₁-weighted MRI from a tumor patient into 5 compartments (1: tumor, 2: contralateral, 3: "rest of the brain", 4: scalp, and 5: "other"). Fig. 1(b-g) show SLAM z-spectra reconstructed with acceleration factors of R=4 (Fig. 1b-d) and R=45 (Fig 1e-g), overlaid on "standard FT" z-

spectra (blue) for compartments 1-3. With R=45, SLAM used only a single phase encode: the z-spectra are indistinguishable from "standard FT" spectra.

Fig. (2a-2f) compare "standard FT" and SLAM z-spectrum measures at 3.5ppm in the 3 compartments for different R-factors. The mean error was 0%, and the standard deviation vs. "standard FT" was ≤10% for R≤45.

Conclusion

If compartment-average metrics suffice, SLAM can speed-up brain CEST studies up to 45-fold compared to the "standard FT" method. SLAM CEST measures agree with "standard CEST" within 10%, which can potentially be acquired in a 1 min scan that could facilitate clinical CEST in applications where scan time is limited, such as in pediatric cases.

References [1] Zhou J, et al. JMRI 2013. [2] Togao O, et al. NeuroOncolgy 2014. [3] Jia G, et al. MRI 2011. [4] Tietze A, et al. NMR Biomed 2013. [5] Tee YK, et al. NMR Biomed 2014. [6] Li C, et al. Eur Radiol 2014. [7] Haris M, et al.

Nat Med 2014. [8] Zhang Y, et al. JMR 2012. [9] Zhang Y, et al. JMR 2013. [10] Pruessmann K, et al. MRM 1999. [11] Kim M, et al. MRM 2009. Grant support: NIH Grant R01 EB007829, CA166171, EB009731

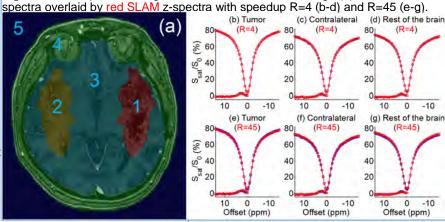


Fig.2: (a-f) SLAM vs. "standard FT" z-spectrum values at 3.5ppm for R=2 to 45. (a) R = 2(b) R = 4SLAM 09 60 60 $r^2 = 1.00$ $r^2 = 1.00$ $r^2 = 0.99$ 40 60 40 60 40 60 (d) R = 9(e) R = 15(f) R = 45 SLAM 09 60 $r^2 = 0.98$ $r^2 = 0.87$ $r^2 = 0.64$ 60 40 60 40 40 60