In vivo sodium T1 and T2 measurements in human calf at 3T

Ping Wang¹, Charles Nockowski², and John C Gore¹

Vanderbilt University Institute of Imaging Science, Nashville, TN, United States, ²Philips Healthcare Technical Support at Vanderbilt, Nashville, TN, United States

Introduction: Sodium MRI has been used as a biomarker of a wide range of diseases, such as ischemia, cancer, edema, osteoarthritis, and hypertension [1-5]. Due to the nature of quadrupolar moments, sodium spins interact strongly with the electric field gradients of their surroundings, resulting in very short relaxation times and more complex relaxation behaviors in biological tissues (with mono-exponential T₁ and bi-exponential T₂) compared to most protons [6]. Measuring sodium relaxation times in specific tissues is desired for accurately estimating tissue sodium content (TSC) using practical imaging sequences. Due to the lower NMR sensitivity, lower concentrations and rapid signal decay, sodium MRI has a much lower (about 3,000 - 20,000 times) SNR than that of proton MRI [7]. To capture as much signal as possible, dedicated MRI sequences, such as UTE (ultrashort echo time) or TPI (twisted projection imaging) [2, 8] are often employed. However, these techniques may not be available on a clinical scanner and are prone to image artifacts. In this study, we evaluate a more practical approach using only commonly available GRE techniques for in vivo sodium T1 and T2 measurements. We found that for certain body parts where large slice thicknesses are allowable without introducing much partial volume effects (such as axial calf imaging), an optimized GRE sequence is capable of measuring sodium relaxation times that in turn can be used to calibrate and correct imaging estimates of tissue sodium levels.

Methods: Two healthy volunteers (ages 25 and 37) participated in this study. Experiments were performed on a Philips 3T Achieva scanner (Philips Healthcare, Cleveland OH, USA) with a Rapid sodium quadrature knee coil (Rapid Biomedical GmbH, Rimpar, Germany). Four calibration phantoms (NaCl aqueous solutions with [Na]: 10mM, 20mM, 30mM, and 40mM) serving as calibration standards were scanned together with sections through subject calf muscles. For T₁ measurements, a 2D spoiled GRE sequence was employed with FOV= 192×192mm², slice thickness = 40mm, bandwidth = 434Hz/pixel. Five scans with different TRs [=20ms, 40ms, 60ms, 80ms, 100ms] were performed with TE = 1.05ms and flip angle = 90°, each scan took 10-15 minutes by adjusting the numbers of acquisitions. Finally data were fit to a mono-exponential function to compute T₁. For T₂ measurements, a 2D multi-echo GRE sequence was used, with the same geometry as the T₁ scan, other parameters: echo# = 8, TE/\Delta TE = 1.19ms/3.3ms, TR = 80ms, FA = 90°, bandwidth = 791Hz/pixel, signal acquisitions = 240, resulting in a scan time of 20min29sec. Data were processed off-line by fitting to a bi-exponential model, so short and long T₂ components were estimated. All fitting was performed pixel-wise.

Results: Figures 1 shows sodium images of sections through the legs of one volunteer at different TR, along with the fitted T₁ recovery curve for one pixel and

histogram of T_1 values obtained. For this case, the measured median muscle $T_{1_calf} \approx 15.1 \text{ms}$. As a comparison, the T_1 in the calibration phantoms was $T_{1_phantom} \approx 15.1 \text{ms}$. 27.3ms. 6000 Histogram of sodium T1 in calf intensity (arb. unit) Figure 1. (A) Sodium images of human calf at different TRs used for 5000 T_1 measurement. The calibration phantoms are shown at the bottom Occurrences 09 of the image: left to right corresponds to [Na] of 10mM, 20mM, 4000 30mM, and 40mM. (B) An example of the mono-exponential T₁ fitting from a calf pixel, and (C) A histogram showing the sodium T₁ 3000 20 Aumper of 20 distribution in calf. acquired data 2000 model 1000 0 40

TR (ms) T1 (ms) Figure 2 shows T_2 measurements of muscle. The measured median $T_{2_short} \approx 1.8$ ms, and $T_{2_long} \approx 28.7$ ms. For the calibration phantoms of NaCl in aqueous solution, a

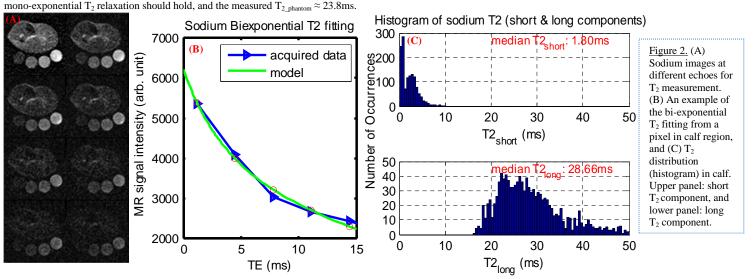
0

20

60

100

O


10

20

30

40

80

Discussion: Knowing the relative values of sodium T1 and T2 in tissues and phantoms is important for accurately calibrating and correcting estimates of tissue sodium levels made from images. The measured sodium T₁ and T₂ in our study are consistent with literature reported values in muscle [7], which indicates the feasibility of accurate in vivo sodium T1 and T2 measurements using optimized (and commonly available) GRE sequences.

References: [1] Ouwerkerk et al. JACC 2007; 4:739. [2] Boada et al. MRM 1997; 37:706. [3] Ouwerkerk et al. Radiology 2003; 227:529-37. [4] Constantinides et al. Radiology 2000; 216:559. [5] Kopp et al. Hypertension 2012; 59:167. [6] Madelin et al. Sci Rep 2014; 4:4763. [7] Madelin et al. JMRI 2013; 38:511. [8] Lu et al. MRM 2010; 63:1583.

TR=20ms

TR=40ms

TR=60ms

TR=80ms

TR=100ms