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Introduction:

Proton magnetic resonance spectroscopy (‘HMRS) offers a non-invasive technique for measuring neurochemical disturbances in cortico-limbic
regulatory circuits in depression. Electroconvulsive therapy (ECT) is a rapidly acting treatment for patients with severe depression. Converging
evidence suggests altered neurochemistry in major depression [1, 6] where ECT induced neuroplasticity and changes neurochemistry measured with
'"HMRS [2, 3] may account for treatment effects. Here, we examined cross-sectional and longitudinal ECT treatment effects on glutamate/glutamine
(GIx), N-acetyl aspartate (NAA), creatinine+phospocreatinie (CrPCr), and myo-inositol (ml) in the hippocampus, and the dorsal and subgenual
cingulate in patients with major depressive disorder (MDD) and cross-sectional effects of diagnosis by comparing metabolite levels between patients
assessed prior to ECT and age and gender matched healthy controls.
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Methods: I P 0.004" It p 0.013*
Subjects included patients with a DSM-V diagnosis of MDD (N=43, 20M/23F, ages ; pP= 0 002" §

20-64 years) and demographically similar control subjects (N=32, 14M/18F, ages 20- i Cr/PCr = 7 §

74 years). Patients were assessed at 3 time points: T1: <24 hours before the first ECT E 5

treatment, T2: <24 hours after the second ECT treatment, and T3: within one week of i ; i

completing the ECT treatment index series at transition to maintenance therapy. 8

Healthy controls completed two testing sessions (C1 and C2 including 32 and 30 Dorsl Gt (Do) Subcmeulatemenmsed csmorremed:
subjects respectively) approximating the time interval between the patient T1 and T3 ,&I p ~
assessments. Single-voxel point resolved spectroscopy (PRESS) sequences were P= 0 002" § p= 0 003"
acquired on a Siemens 3T Allegra system (TR/TE: 2200/30 ms; spectral width 2000 § Cr/PCr

Hz; 1024 samples) with and without water suppression (/28/1 averages). A volumetric
navigator was used to correct for motion and BO inhomogeneities in real time [4].
Voxels of interest (30 x 12 x 12 mm) were positioned in the midsagittal dorsal and

" i
subgenual cingulate cortex and in left and right hippocampal gray matter using T1-

weighted MPRAGE images resliced in 3D. Following denoising [5] of the MRS Fl%‘ l:bECT tlree.ltmelnt (lt(,mgét"}glgaléfffemz foi dorsal
signals for each voxel, water-referenced metabolite concentrations were computed and subgenual cingulate for Cr/PCr, GIx, and ml.
using LCModel. Tissue segmented T1 images were used to correct metabolite
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concentrations for voxel CSF content. Longitudinal effects were examined with | s p = 0.032* R .
General Linear Mixed Models (GLMMs). Cross-sectional effects of diagnosis were | & 1 g ) p = 0.001
examined by comparing metabolite values between patients and controls scanned at § i
baseline. Sex and age were included as covariates in all analyses. g Glu ? NAA
Results ; *
In the dorsal cingulate, significant effects of ECT (Figure 1) were found for Glx - & ﬁ
(F=3.458, p=0.032), CrPCr (F=6.24, p=0.005), and ml (F=7.44, p=0.002).

Additionally pairwise contrasts showed significant increases for Glx between T1 and Fig. 2: Diagnosis (cross- Sectlonal) effects for dorsal
T3 (p=0.013), for CrPCr between T1 and T3 (p=0.004), and T2 and T3 (p=0.002), and cingulate (Glu) and hippocampus (NAA).

for ml between T1 and T3 (p=0.001) and T2 and T3 (p=0.002). In the left
hippocampus, significant ECT effects were found for Glx (F=5.55, p=0.005). Pairwise contrasts showed decreases in Glx between T1 and T2
(p=0.003), with a trend between T1 and T3 (p=0.066). In the right hippocampus, main ECT effects were found for NAA (F=3.795, p=0.032).
Pairwise decreases in NAA were observed between T1 and T3 (p=0.016), and between T2 and T3 (p=0.029). In the subgenual cingulate, significant
ECT effects were found for CrPCr (F=5.975, p=0.007), and increases in CrPCr occurred between T1 and T3 (p=0.016), and T2 and T3 (p=0.003).
Effects of diagnosis (Figure 2) showed significantly reduced Glu (F=5.905, p=0.032) and NAA (F=5.395, p=0.023) in patients in the dorsal
cingulate, and significantly reduced NAA (F=11.24, p=0.001) in the left hippocampus compared to controls.

Discussion: Though prior studies have shown changes in neurochemistry with ECT, this is the first study to our knowledge to simultaneously
investigate changes in ‘over reactive’ dorso-medial (anterior cingulate) and ‘under-reactive’ ventral limbic (hippocampus) regions linked with mood
regulation and emotional response respectively. Results showed a significant increase and normalization of GIx in the dorsal cingulate with ECT
suggesting increased excitatory neurotransmission in line with prior findings [7]; changes in creatine and ml suggest glial function and/or second
messenger-mediated neurotrophic factors also account for therapeutic effects. In contrast, Glx decreased with ECT in the left hippocampus, findings
that may suggest changes in hypo- and hyperactive dorsal and ventral cortico-limbic networks and relate to ECT-induced neurogenesis or
synaptogenesis [7, 8]. Patients showed decreased levels of NAA in the left hippocampus compared to controls at baseline. Since NAA is an MRS
marker of neuronal integrity, these suggest neuronal dysfunction in MDD.
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