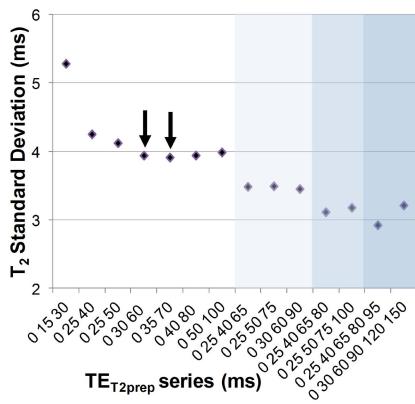


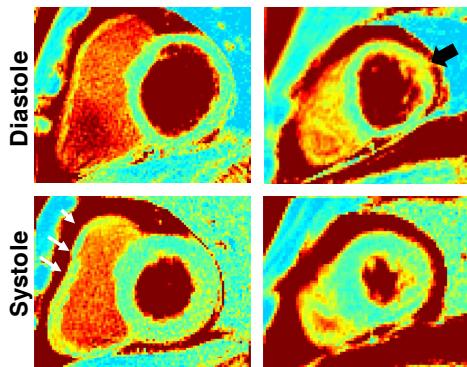
Characterization of the Accuracy and Precision of Radial Cardiac T₂ Mapping at 3T

Helene Feliciano^{1,2}, Wajihah Bano^{1,2}, Matthias Stuber^{1,2}, and Ruud B. van Heeswijk^{1,2}

¹Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland, ²Center for Biomedical Imaging (CIBM), Lausanne, Switzerland


Introduction: In recent years, cardiac T₂ mapping has seen increased use for the quantification of edema. The T₂ mapping techniques that have been established in recent years involve acquiring several images with different T₂ preparation module echo times (TE_{T2prep}), combined with a robust cardiac imaging pulse sequence [1,2,3]. After the acquisition, T₂ values are computed by fitting an exponential decay curve across the multiple images in each pixel, using a two-parameter exponential decay equation. However, the variability of the accuracy (i.e. how close the measured T₂ value is to the 'true' T₂ value) and the precision (i.e. the T₂ standard deviation) of these pulse sequences have not been investigated. The aim of this study was therefore to evaluate the accuracy and precision of radial cardiovascular T₂ mapping at 3T as a function of confounders such as the signal-to-noise ratio (SNR), acquisition in systole vs. diastole, and the off-resonance frequency, using both numerical simulations and in-vivo imaging of healthy adult volunteers.

Methods: Approval was obtained from the institutional review board. Bloch equation simulations were used to establish ideal magnetization behavior for the radial ECG-triggered and navigator-gated gradient-echo-based cardiac T₂ mapping sequence [3]. Monte Carlo simulations were then used to add 10'000 different combinations of Rician noise per SNR level and TE_{T2prep} series, in order to ascertain the influence of the SNR (determined at TE_{T2prep}=0 ms) and the choice of the number and spread of TE_{T2prep} increments on the T₂ fitting accuracy and precision. Next, in-vivo imaging was performed in eleven healthy adult volunteers to establish the difference in reproducibility of short-axis T₂ mapping in diastole and systole, and the blinded intra- and inter-observer variability was ascertained through Bland-Altman plots. A segment-wise SNR analysis of these T₂ maps was performed to determine the correlation between the SNR and the accuracy. Finally, the effect of an off-resonance excitation frequency (from -200 to +200 Hz) on the accuracy of T₂ maps was studied in eight healthy volunteers.


Results: The Monte Carlo simulations demonstrated that a higher number of TE_{T2prep} with intermediate increments results in the highest precision of the fitted T₂ value (Figure 1), while the apparent T₂ value remains within 1 ms of the 'true' value for SNR~10 and higher. Systolic T₂ maps resulted in a larger available myocardium per 2D slice than diastolic T₂ maps (Figure 2), but did not result in different myocardial T₂ values (41.6±4.5 vs. 41.7±5.1 ms, respectively, p=0.8). The intra-observer 95% confidence interval (CI) was [-1.5 ms to 1.6 ms] for systolic T₂ maps, while it was [-1.9 ms to 1.9 ms] for diastolic T₂ maps (p=0.05). The inter-observer CI was [-2.0 ms to 2.7 ms] for systole and [-2.1 ms to 2.8 ms] for diastole (p=0.86). There was no significant correlation between segmental myocardial SNR and T₂ standard deviation in these T₂ maps. In the off-resonance study, the overall apparent T₂ values increased with the frequency offset, although the segmental pattern differed for the individuals: certain volunteers for example demonstrated elevation in septal segments, while others would mainly demonstrate elevation in inferior segments. Off-resonance frequencies beyond ±100 Hz caused a significant decrease in both the accuracy and precision of the T₂ maps: in the septal segments, the average T₂ value increased from 40.0±1.4 ms on resonance to 63.0±4.1 ms at -200 Hz (Figure 3).

Discussion: The Monte Carlo simulations suggest that the increment between the individual TE_{T2prep} does have an influence on the precision, and the use of an intermediate TE_{T2prep} increment (25-30ms) is recommended. The volunteer studies demonstrated that systolic T₂ mapping is at least as reproducible as diastolic T₂ mapping, while there is no statistically significant difference between the measured T₂ values. There is no correlation between the segmental SNR levels and the T₂ values in healthy volunteers, which indicates that the SNR obtained in vivo (i.e. >10) does not affect the accuracy of the T₂ computations. Furthermore, similar to T₁ mapping [4], frequency offsets larger than ±100Hz have a large and detrimental effect on the accuracy of T₂ maps, and optimized shimming is mandatory for adequate performance. In summary, the above findings will help better guide protocol definition of studies that include T₂ mapping.

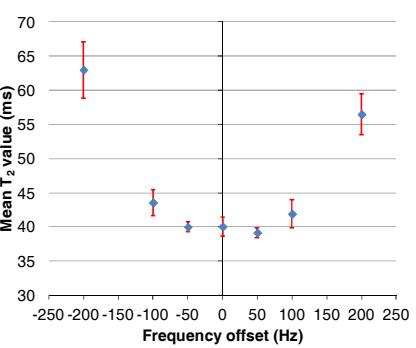

References: [1] Foltz et al. MRM 2003 [2] Giri et al. JCMR 2009 [3] van Heeswijk et al. JACCI Imaging 2012 [4] Kellman et al. JCMR 2013

Figure 1. The standard deviation (i.e. precision) of the TE_{T2prep} series for Monte Carlo simulations of SNR=10. As the number of TE_{T2prep} is increased, the standard deviation decreases. The TE_{T2prep} increment furthermore also affects the fitting precision, with the moderate TE_{T2prep} series resulting in slightly lower standard deviations (arrows).

Figure 2: T₂ maps of an example volunteer at the left-ventricular base and apex in diastole (upper row) and systole (lower row). The myocardium appears thicker in systolic than in diastolic maps. The wall of the right ventricle is also more distinct in systole (white arrows). In the apical image, there is a blurred area in the diastolic image (black arrow) on the lateral side, which is not present in the systolic image. The color bar indicates the T₂ relaxation time in ms.

Figure 3: The frequency offsets versus mean T₂ values in the septal myocardium of healthy volunteers. There was no significant difference between the on-resonance T₂ values and those at frequency offsets of ±50 Hz or for the offset of +100 Hz (all p>0.05). For the offsets of -100Hz and ±200 Hz, there was a significant T₂ elevation (all p<0.01).