Effect of the Number of Echoes and Reconstruction model on the Precision and Reproducibility of T₂ Measurments in Myocardial T₂ Mapping

Tamer Basha¹, Mehmet Akçakaya¹, Sébastien Roujol¹, and Reza Nezafat¹

Department of Medicine, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, Massachusetts, United States

Target Audience Scientists and clinicians who are interested in myocardial T₂ mapping.

Introduction Quantitative myocardial T_2 mapping allows non-invasive assessment of myocardial inflammation/edema (1). Recent implementations use T_2 -prepared (T_2 prep) SSFP sequences to acquire multiple T_2 weighted images at different echo times, then generate the T_2 maps based on a 2-parameter fitting (2P-fit) model of T_2 decay (2,3). Recently, a 3-parameter fitting (3P-fit) model was found superior to the conventional 2P-fit model, as it compensates for T_1 relaxation effect, and results in more accurate T_2 measurements (4). In this work, we sought to characterize the 3P-fit approach in terms of precision and reproducibility and to evaluate the influence of the number of employed T_2 prep echo times on these two metrics.

Methods <u>Numerical Simulations</u>: Monte-Carlo simulations (N=1000) were performed to study the effect of increasing the number of T_2 prep images. Block equation was used to simulate the signal intensities of a presumed tissue of $T_2 = 50$ ms at different T_2 prep echo times and different SNR levels. T_2 was then estimated using both 2P-fit and 3P-fit models, and the precision was quantified for each model.

In-vivo Pilot Study: Ten healthy subjects $(27\pm10 \text{ y/o}, 5\text{m})$ were imaged using a 1.5 T Phillips scanner with a free-breathing ECG-triggered single shot T2prep bSSFP sequence (FOV = $320\times320 \text{ mm}^2$, in-plane resolution = $2.5\times2.5 \text{ mm}^2$, slice thickness = 8mm, TR/TE = 2.2/1.1ms, FA = 40° , SENSE rate = 2, acquisition window = 140 ms, 14 T2prep echo times = 0.25,35,...135,145 ms). To compensate for through-plane motion that might occur due to breathing, a prospective slice tracking was performed using a pencil-beam respiratory navigator positioned on the right-hemi-diaphragm and acquired immediately before each T2prep pulse. A 4s rest period after each image to allow for full spin relaxation. Data were reconstructed using the 3P-fit model. For comparison, a conventional T2 mapping sequence was acquired (breath hold, 3 T2prep = 20,50,75ms, and 2P-fit model). For each subject, both sequences were repeated 5 times. Precision and reproducibility were compared using different subset of T2prep echo times.

<u>In-vivo Experiments:</u> Based on the pilot study results, an optimized T_2 mapping sequence using 10 T_2 prep echoes and a 3P-fit model is proposed and evaluated in-vivo in 10 healthy subjects (29±17 y/o, 4m). This sequence is compared to the conventional T_2 mapping sequence (i.e. 3 T_2 prep echoes and a 2P-fit model) in term of precision and reproducibility.

<u>Data Analysis:</u> All images were transferred to a separate workstation for analysis. Images were registered using non-rigid registration to compensate for residual in-plane motion, and T₂ values were calculated. Then, a myocardial segment based analysis was performed following the AHA segment model.

Results Numerical Simulations: Fig. 1 shows the numerical simulations results. Increasing the number of T_2 prep echoes improves the precision of the T_2 measurements. This effect decreases with increasing the number of T_2 prep echo times till it nearly saturates for number of echoes ≥ 10 .

In-vivo Experiments: Figure 2 shows the T_2 measurements in one example subject from the pilot study. T_2 measurements using a 2P-fit model are dependent on the number of T_2 prep echo times while the 3P-fit model provides consistent T_2 measurements independent of the number T_2 prep echo times. Increasing the number of T_2 prep echoes leads to better precision and reproducibility of the measurements. However, and as numerical simulations predicts, this effect becomes minimal for large number of T_2 prep echo times (≥ 10).

Figure 3 shows Improved in-vivo precision and reproducibility was achieved using the proposed sequence when compared to the conventional sequence (7ms vs. 11ms p<0.05 and 1.2ms vs. 2.4ms p<0.05, respectively).

Conclusion The proposed sequence using 10 T_2 prep echoes times and a 3P-fit model provides T_2 measurements that are independent from the number of T_2 prep echo times, and results in better invivo precision and reproducibility compared with the conventional T_2 mapping sequence.

References

- [1] He,JMRI,2006,
- [2] Giri,MRM,2012,
- [3] Van Heeswijk, JACC, 2012,
- [4] Akçakaya,MRM,2014.

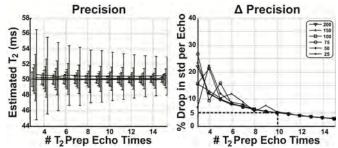


Figure 1. Numerical simulation results for the effect of number of echo images on the precision of the quantifications for different signal-to-noise ratios. As the number of echoes increases, the precision gets better till it nearly saturates for number of echoes ≥ 10 .

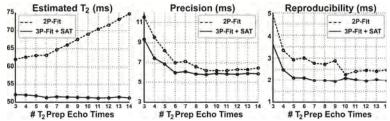


Figure 2. Accuracy, precision and reproducibility of T_2 mapping when using different number of echo images. With increasing the number of echoes, estimated T_2 values changes significantly when using 2P-fit, while it shows consistency when using the 3P-fit regardless of the number of echoes used for the estimation. Both precision and reproducibility increases when using more echo images for the T_2 estimation. However, and similar to what numerical simulations predicts, the effect nearly saturates for number of echoes ≥ 10 .

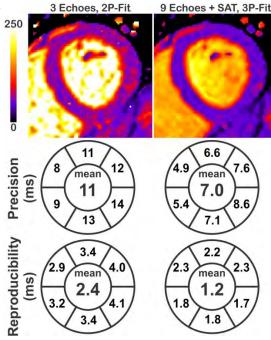


Figure 3. An example for the T_2 maps of one healthy subject. The bullseyes shows the overall segment-based precision and reproducibility over all 10 subjects, when using the 3 echoes with 2P-fit, and 10 echoes with 3P-fit. The values in each bullseye center represent the measurement value over the whole myocardium not the average of the segments values.