

RELAXATION-WEIGHTED SODIUM MRI OF BREAST LESIONS AT 7T

Stefan Zbyn¹, Olgica Zaric¹, Vladimir Juras¹, Katja Pinker², Alex Farr³, Nadia Benkhedah⁴, Pascal Balzer², Vladimir Mlynarik¹, Armin Nagel⁴, Christian Singer³, Thomas Helbich², Wolfgang Bogner¹, and Siegfried Trattning¹

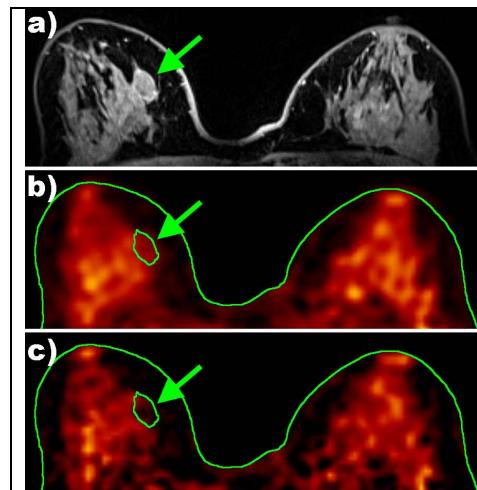
¹High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria, ²Division of Molecular and Gender Imaging, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria, ³Department of Gynecology and Obstetrics, Medical University of Vienna, Vienna, Austria, ⁴Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany

TARGET AUDIENCE: Radiologists and physicists interested in sodium MRI for evaluation of breast lesions.

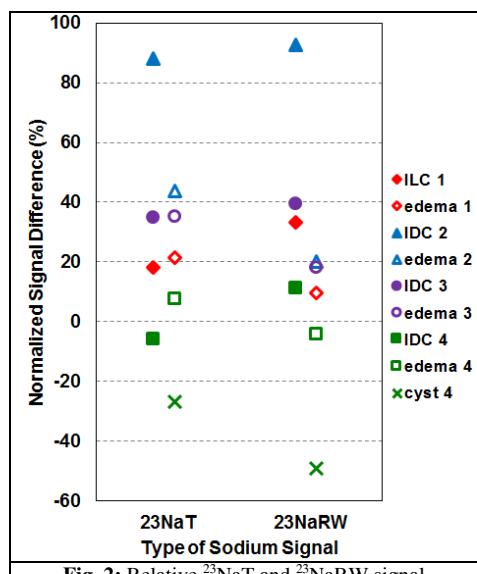
PURPOSE: Dynamic contrast-enhanced (DCE) MRI is an established diagnostic tool for the assessment of breast tumors with high sensitivity and good specificity. It has been demonstrated that the addition of functional MRI parameters such as diffusion-weighted imaging (DWI) improve specificity. While DWI is sensitive mainly to cellularity, sodium (²³Na) MRI provides additional information on physiology and metabolism of cells in lesion. Several studies demonstrated an increased ²³Na concentration in malignant breast lesions compared to healthy tissue [1]. However, total ²³Na signal (²³NaT) is a volume-weighted average of ²³Na in the intracellular and extracellular (interstitial fluid/edema, plasma) space. Motion restricted ²³Na ions, predominantly situated in cells, exhibit shorter T1 and T2* relaxation times compared to ²³Na ions in fluid. This fact can be used for selective suppression of ²³Na signal from fluid. Relaxation-weighted (RW) ²³Na MRI, such as double-readout imaging, showed higher sensitivity to changes in intracellular ²³Na signal and were able to distinguish between low- and high-grade brain tumors [2]. Therefore, the aim of this study was to compare ²³NaT signal with relaxation-weighted ²³Na signal (²³NaRW) in breast lesions at 7T.

METHODS: This study was approved by local ethics committee. Four patients with histologically proven breast cancer (one invasive lobular carcinoma grade II, three invasive ductal carcinoma grade II; all having MIB-1 proliferation rate of 10%; age range: 49–66 years) were measured at a 7T whole body system (Magnetom, Siemens Healthcare, Erlangen, Germany). Images were acquired with a double-resonant ¹H/²³Na bilateral phased array breast coil (Quality Electrodynamics, Mayfield Village, OH, USA).

In all patients, DCE MR images were obtained before and after contrast agent administration using the gradient echo with k-space undersampling and data sharing time-resolved angiography with stochastic trajectories (TWIST) sequence (TR/TE= 4.6/2.4 ms, resolution= 0.7×0.7×0.7 mm³, temporal resolution= 14s, BW= 590 Hz/pix, TA= 8:36 min) (Fig. 1a). For DWI, readout-segmented echo-planar imaging with parallel imaging was performed (TR/TE1/TE2= 5500/60/102 ms, resolution= 0.9×0.9×5.0 mm³, b values= 0 & 850 s/mm², BW= 566 Hz/pix, TA= 3:36 min) [4]. For double-readout ²³Na-MRI, DA-3DRP sequence was measured (TR= 103 ms, TE1/TE2= 0.58/12.0 ms, 9000 projections, nominal resolution= 4.0×4.0×4.0 mm³, BW= 100 Hz/pix, TA= 15:27 min).


All ²³Na images were reconstructed offline in MATLAB (The Mathworks Inc, Natick, MA, USA). ²³NaT images were represented by images acquired at TE1 with double-readout ²³Na MRI (Fig. 1a). ²³NaRW images were calculated from double-readout images on a pixel-by-pixel basis using weighted subtraction of signal intensities: RW= TE1-F×TE2, where the weighting factor F= exp(TE1-TE2)/T2*_{FLUID} (Fig. 1c). The measured ²³Na T2* in saline solution was 48 ms, which gave F=1.269. The variation of flip angle within the breast coil volume was corrected using factors calculated from ²³Na images obtained from homogenous saline phantom. All regions-of-interest (ROI) evaluations were performed in JiveX (VISUS GmbH, Bochum, Germany). All ROIs were drawn on DCE MRI and DWI images and subsequently transferred to corresponding ²³NaT and ²³NaRW images. For better comparison between ²³NaT and ²³NaRW, signal intensity of lesion or edema was normalized to signal of contralateral healthy breast tissue and expressed in percent as: 100×(lesion – healthy)/healthy.

RESULTS: While ²³NaT imaging obtained a signal proportional to the local ²³Na concentration, ²³Na ions with a longer T2*, such as in a cyst, were well suppressed in ²³NaRW images (Fig. 1c). This is demonstrated by the decrease of mean normalized signal difference in edematous tissue from 27% in ²³NaT images to 11% in ²³NaRW images (Fig. 2). Similarly, normalized signal difference measured in cyst decreased from -27% in ²³NaT image to -49% in ²³NaRW image. Moreover, ²³NaRW MRI revealed increased signal in all four malignant lesions, while ²³NaT imaging demonstrated elevated signal in three lesions. In carcinomas, mean normalized signal difference increased from 34% in ²³NaT images to 44% in ²³NaRW images (Fig. 2).


DISCUSSION: Our results demonstrate feasibility of double-readout ²³Na-MRI in patients with breast cancer with sufficient resolution and in clinically acceptable measurement time at 7T. Both ²³NaT and ²³NaRW images are obtained in one measurement. While an elevated ²³Na signal was observed both in malignant lesions and edema, ²³NaRW images demonstrated the signal increase only in malignant lesions. By suppressing ²³Na signal coming predominantly from fluid, ²³NaRW images allowed improved differentiation between edema, benign lesions and breast cancer.

CONCLUSION: To our best knowledge, this is the first study employing ²³NaRW-MRI for the evaluation of breast lesions. Further optimization of ²³NaRW-MRI based on relaxation times of tumor and edematous tissue might additionally improve image contrast between edema, benign and malignant lesions. Combined information from ²³NaT and ²³NaRW images may improve noninvasive evaluation of breast lesions.

REFERENCES: [1] Ouwerkerk R, Jacobs M.A., et al. Elevated tissue sodium... *Breast Cancer Res Treat*. 2007;106(2):151-160. [2] Nagel A.M., Bock M., et al. The Potential of Relaxation-Weighted Sodium... *Invest Radiol*. 2011;46: 539–547. [3] Nagel A.M., Laun F.B., et al. Sodium MRI using a density-adapted... *Magn Reson Med*. 2009;62:1565–1573. [4] Bogner W, Pinker K., et al. Bilateral Diffusion-weighted MR Imaging... *Radiol*. 2014; DOI: <http://dx.doi.org/10.1148/radiol.14132340>

Fig. 1: a) DCE image, b) color-coded ²³NaT image, and c) ²³NaRW image. Arrows indicate location of cyst with $ADC = 2.24 \times 10^{-3} \text{ mm}^2/\text{s}$. Please note signal suppression in cyst on ²³NaRW image.

Fig. 2: Relative ²³NaT and ²³NaRW signal intensities in edematous tissue, in cyst and in invasive lobular and ductal carcinomas.