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Introduction: A growing body of literature indicates that human brain function varies across time. Recent studies have demonstrated that the resting state brain is 
constantly transiting among a small number of states. For example, Allen et al. [1] performed k-means clustering on the temporal covariance matrices of 50 intrinsic 
connectivity networks in sliding time windows and obtained 7 brain connectivity states. Similarly, Zhang et al. [2] detected the state switching points using a dynamic 
Bayesian variable partition model and identified 12 states with dictionary learning. Furthermore, these dynamic approaches have been proven to be valuable in detecting 
neuropsychiatric disorders, such as Schizophrenia [3] and PTSD [4]. These studies all support the hypothesis that dynamic analysis is able to provide more information 
for identifying disease specific alterations/plasticity than static analysis. In this abstract, we present a dynamic analysis approach based on the Gaussian Hidden Markov 
Model (GHMM). While a hidden Markov model was previously applied to symbolic labels, determined by hierarchical clustering based on correlation coefficients 
derived using a sliding window [4], our approach models the raw time series without sliding windows so that spatial activation patterns of states and temporal 
parameters can be determined directly from the model. We were able to detect 9 reproducible brain states by GHMM on two different datasets. 

Methods: The GHMM can be applied on both volumetric data and grayordinate data used in Human Connectome Project (HCP). For the volumetric GHMM, we 
focused on the resting state fMRI (rfMRI) data of 90 subjects in 1000 Functional Connectomes Project (1000FCP) Beijing_Zang dataset. Standard preprocessing steps 
were performed as in 1000 FCP preprocessing pipeline [5] sans global signal regression. For each subject, 34745 time courses of fMRI single were extracted from the 
cortex and then fed into GHMM. For the surface-based GHMM, 38 subjects from HCP S500 release were used and the preprocessing was performed according to the 
minimal preprocessing pipelines [6]. In particular, we considered the data that had been registered onto 32k Cento69 surface 
mesh [7] and slightly smoothed with 2 mm FWHM kernel. Two hundred thirty six nodes on the cortical surface were chosen 
according to [8] and their time courses were used to train GHMM.  
In GHMM, each brain state was modeled as a multivariate Gaussian distribution and the transition process among states was 
modeled as a Markov chain. When training GHMM, we employed an Expectation-Maximization algorithm [9] to solve the 
following objective function. Our source code was modified based on Scikit Learning [10]. ߣሚ ൌ argmaxఒ ෍ ܲሺݍ଴ሻෑܽ௤೟షభ௤೟ 1ටሺ2ߨሻேหࢳ௤೟ห ݌ݔ݁ ቆെ12 ൫ࡻ௧ െ ௧ࡻ௤೟ିଵ൫ࢳ௤೟൯்ࣆ െ ௤೟൯ቇࣆ ,்
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where ߣ is the parameter set for the Gaussian HMM, ࡻ௧ and ݍ௧ are the observations from fMRI and the hidden state at time ݐ; ܽ௜௝ ൌ ܲሺݍ௧ିଵ ൌ ௧ݍ|݅ ൌ ݆ሻ denotes the probability of switching from state ݅ to state ݆; ࣆ௜ and ࢳ௜ represent the mean vector and 

covariance matrix of the multivariate Gaussian distribution under state ݅; ܰ is the total number of time courses that are fed into 
the model; and ܲሺݍ଴ሻ is the initial state probability which is assumed to be uniform distributed. The total state number was 
determined by maximizing the algorithmic reproducibility. We tried different total state numbers (4, 5, 7, 8, 9, 10, 11, 20 and 
30) and repeated the algorithm 30 times for each total state number. When the total state number was less than or equal to 9, all 
the states were 100% reproducible, but the reproducibility did not hold when state number exceeded 9. Therefore, we set the 
total state number to 9 and only investigated these reproducible brain states. After training, we used Viterbi algorithm to 
decode the state transition sequence. Subsequently, the z-scores of the spontaneous activation pattern under 
each brain state were calculated based on the state sequence. 

Results and Discussions: Fig. 1 and Fig. 2 demonstrate the 9 brain activation states (z-scores larger than 
1.96 are plotted) derived for 1000FCP volumetric data and HCP cortical surface data, respectively. The 
states are sorted by their average time occupation during the scan. Conventional Resting States Networks 
(RSNs) can be found in these states of both datasets. For example, the default mode network (DMN) is 
activated in S5, S6 of Fig. 1 and S1, S6 of Fig. 2, and deactivated in S4 of Fig.1 and S5 of Fig. 2. The 
attention network is activated in S7 of Fig. 1 and S2 of Fig. 2. S8 and S9 in both figures show whole brain 
activation and whole brain deactivation states, in which the visual cortex is the most activated and 
deactivated region. Other states are different in two datasets (In Fig. 1, S1: activated executive network, S2: 
activated visual + sensory networks, S3-whole brain activation; in Fig. 2, S3: whole brain deactivation with 
visual cortex most deactivated, S4: whole brain activation with DMN most activated, S7: deactivated 
DMN). The difference between the states of two datasets could result from different scan protocol and 
preprocessing steps. However, these 9 brain states are all combination of conventional RSNs and 6 states 
are reproducible on both datasets. 

Conclusion: We developed a new modeling approach, GHMM, for characterizing the dynamics of rfMRI data. Nine brain states were detected on both volumetric and 
surface data, partially overlapping with conventional RSNs. Future work will focus on analyzing the temporal characteristics of the states, such as occurrence and 
duration, as well as investigating and identifying differences between disease and control groups. 
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Fig. 1. Nine brain states detected on 
1000 FCP volumetric data. 

Fig. 2. Nine brain states detected on HCP data. 
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