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Introduction: Dynamic parallel magnetic resonance imaging (PMRI) has been widely used in a variety of fast imaging applications to accelerate the data acquisition 
without apparent compromise of the spatial-temporal resolution. An accurate calibration is the key for successful dynamic PMRI1-3. However, the calibration quality 
typically decreases with both small amount of calibrating signals and motion-induced temporally varying coil sensitivity. In this work, we propose a new, dynamic 
PMRI exploiting sparse Kalman smoother (k-t SPARKS) for robust calibration and reconstruction in the presence of time-varying coil sensitivity, in which the proposed 
method incorporates the Kalman smoother calibration and the sparse signal recovery into a single optimization problem, leading to joint estimation of time-varying 
convolution kernel and full k-space. Simulation and experiments were performed using both the proposed and conventional methods in the free-breathing cardiac cine 
applications for comparison. 
Theory: Under the assumption that the convolution kernel transition between adjacent time frames in dynamic PMRI is slow and thus inter-frame difference remains 
marginal, the kernel can be described by the following, two linear state-space equations: ܜ,ܔ܏ ൌ ૚ିܜ,ܔ܏ ൅ ܜ,ܔܡ ;(1) ܜ,ܔܟ ൌ ܜ,ܔ܏ܜ܁ ൅  is the convolution ܜ,ܔ܏ where ,(2) ܜ,ܔܞ
kernel at the l୲୦ coil and the t୲୦ time frame, ܜ,ܔܡ is the measured target signals, ܜ܁ is the matrix consisting of source signals, and ܜ,ܔܟ~घ൫૙,ܜ,ܔۿ൯ and ܜ,ܔܞ~घ൫૙,ܜ,ܔ܀൯ 
represent the process and the measurement noises with normal distribution, respectively. Unlike the Kalman filter4, in this work all available data (past, current, future 
observations) in k-t space are included in estimating the kernel by solving the optimization problem in a framework of the fixed-interval Kalman smoother5: 

܁۹ܜ,ܔ܏  ൌ ܁۹ܔ܏ܖܑܕ ૚૛ ܔ܏܁‖ െ ష૚૛ܔ܀‖ܔܡ ൅ ૚૛∑ ฮܜ,ܔ܏ െ ୀ૚ܜ܂ష૚૛ܜ,ܔۿ૚ฮିܜ,ܔ܏        (3)  

where ܁ ൌ ⋯,૚܁ሺ܏܉ܑ܌ , ܔ܀ ,ሻ܂܁ ൌ ⋯,૚,ܔ܀൫܏܉ܑ܌ ܔܡ ൯, and܂,ܔ܀, ൌ ૚,ܔܡ൫ൣ܋܍ܞ  ൧൯. Note that this is a non-causal process in that the convolution kernel is estimated usingܜ,ܔܡ⋯
all available observations. Since the unknowns of convolution kernel rapidly grow with increasing number of time frames, the problem becomes computationally 
intractable. For this reason, the convolution kernel is recursively estimated by exploiting forward-backward algorithm: 1) the Kalman filter in the forward time direction, 
2) the information filter (defined as the reverse-time filter with respect to the forward filter) in the backward time direction, and 3) the optimal combination (smoothing) 
of the two estimates in the forward and backward directions.  Incorporating the Kalman smoother calibration step into the constrained optimization problem, we propose 
a novel dynamic PMRI, leading to joint estimation of time-varying convolution kernel and full k-space directly in k-t space:  

P0: ܐሺܔܠ, ሻܔ܏ ൌ ܔ܏,ܔܠܖܑܕ ૚૛ ܔ܏܁‖ െ ష૚૛ܔ܀‖ܔܡ ൅ ૚૛∑ ฮܜ,ܔ܏ െ ୀ૚ܜ܂ష૚૛ܜ,ܔۿ૚ฮିܜ,ܔ܏ ൅ ૃ૚‖۴ܔܠܛ۴ܜ‖૚,   s. t. ܔܠ ൌ ऋሺܡ,   ሻ  (4)ܔ܏

where ۴ܛ and ۴ܜ are the Fourier operator in the spatial-temporal direction, respectively, and ऋሺ∙ሻ is a convolution operator such as GRAPPA or SPIRiT. To tackle the 
optimization problem with two unknowns, ܔܠ and ܔ܏, under the framework of the alternating minimization algorithm, we decompose Eq. (4) into the two simplified 
subproblems: 1) Kalman smoother calibration, and 2) sparse signal recovery: 

P1: ܔ܏ ൌ ܔ܏ܖܑܕ 	૚૛ ฮ܁෨ܔ܏ െ ష૚૛ܔ෩܀ฮܔ෤ܡ ൅ ૚૛∑ ฮܜ,ܔ܏ െ ୀ૚ܜ܂ష૚૛ܜ,ܔۿ૚ฮିܜ,ܔ܏    (5) 

P2: ܔܠ ൌ ܔܠܖܑܕ 		ૃ૚‖۴ܔܠܛ۴ܜ‖૚ ൅ ૃ૛૛ ܔܠ‖ െऋሺܡ,     (6)	ሻ‖૛૛ܔ܏

where ܡ෤ܔ ൌ ሾ܂ܔܡ	܂ܔܠሿ܁ ,܂෨ ൌ ܔ෩܀ ,܂൧܂෠܁	܂܁ൣ ൌ ,ܔ܀ሺ܏܉ܑ܌ ૃ૛ି૚۷ሻ, and ܔܠ 
and ܁෠ are the estimated signal vector and its corresponding source 
matrix in k-t space at the previous step. The proposed 
minimization, which alternates the Kalman smoother calibration 
with the sparse signal recovery, continues until the objective 
function converges.  
Methods and Results: To validate the temporally variant kernels 
representing time-varying coil sensitivity, real-time cardiac cine 
data (128x128x48) in k-t space were prospectively acquired using 
8-channels for both normal and coached free breathing at the net 
reduction factor of 4.0. The images reconstructed by each method 
in the coached free breathing (Fig. 2) produces large aliasing 
artifacts and obscures temporal dynamics than those 
reconstructed in the normal free breathing (Fig. 1). Although k-t 
SPARKS is slightly impaired by breathing patterns, it improves 
image quality exhibiting less aliasing artifacts and delineating 
respiratory-cardiac motions compared to the existing methods 
(Fig. 2).  
Conclusion: we successfully demonstrated the effectiveness of 
the proposed k-t SPARKS in suppressing aliasing artifacts and 
preserving temporal dynamics even with a small amount of 
calibration signals. It is expected that the proposed k-t SPARKS 
widens its clinical applications without the need for breath-
holding.  
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