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INTRODUCTION: In T1-weighted dynamic contrast enhanced (DCE) MRI, pharmacokinetic (PK) parameter maps (e.g. Ktrans, abbreviated Kt, and 
vp) are derived from the dynamic image series and used for diagnostic purpose. In accelerated DCE MRI, anatomic image series are typically 
reconstructed from under-sampled (k,t)-space first, then fit into a PK model to derive the parameter maps [1]. We call this the “indirect” method. As 
the PK parameter maps have much lower dimensionality than the original multi-coil (k,t)-space, we hypothesize that direct estimation of PK 
parameter maps will allow higher acceleration and save computational resources required to estimate intermediate steps. Recently, Dikaios et al [2] 
proposed a Bayesian inference framework to directly estimate PK maps from under-sampled (k,t)-space and achieved 8x acceleration in phantom and 
in-vivo prostate cancer data. In this study, we propose a novel and efficient optimization approach to directly reconstruct the PK parameters from 
highly under-sampled (k,t)-space, and compare results against a state-of-the-art indirect method [1]. 

METHODS: Fig 1 demonstrates the forward model beginning with PK parameter maps (assuming a Patlak model [3]). The PK parameters (Kt, vp) 
are related to the acquired under-sampled (k,t)-space data (ku(t)) by the steps indicated in Table 1. The proposed model-based reconstruction is to 
solve (Kt, vp) from ku(t) expressed as a least-squares optimization problem [2]:
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 (Eqn 1), 

where sparsity is enforced by l1 norm constraints in the wavelet transform (Ψ) domain of the PK parameter maps as indicated Eqn 1. This nonlinear 
optimization problem is solved by a quasi-Newton limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method, where Kt and vp were 
solved alternatingly. The l1 norm was relaxed as in [4] to calculate the gradient, which was required for this L-BFGS method. The algorithm was 
implemented in MATLAB using the minFunc toolbox from [5]. The wavelet penalties were chosen empirically. A fully-sampled DCE data set from 
a glioblastoma patient was acquired in a 3T GE scanner (FOV: 22×22cm, spatial resolution: 0.9×1.3×7.0mm3, temporal resolution: 5s, fast spoiled 
gradient echo sequence). The data set was retrospectively under-sampled in the kx-ky plane, simulating the ky-kz plane as in a 3D case, using a 
randomized golden-angle sampling pattern [6]. Then the proposed model-based direct reconstruction was used to calculate the PK maps directly from 
the under-sampled (k,t)-space. The PK maps were also estimated using images from fully-sampled (k,t)-space, and from indirect reconstruction of 
under-sampled (k,t)-space using spatial-temporal wavelet and total variation constraints [1]. 

RESULTS: Fig 2 shows the results from the glioblastoma patient at three acceleration rates, compared with the fully-sampled reference and indirect 
reconstruction. The image quality of the PK maps at the acceleration rate of 20 was comparable to the reference images. For higher acceleration rates, 
vp maps degraded in regions containing small vessels, but Ktrans

 maps remained accurate in the tumor. This suggests that the most critical diagnostic 
information is not compromised. Both the indirect and direct approaches used 100 iterations, taking 265s and 296s respectively for reconstruction. 
The overall image quality at 100x for the direct approach was superior to the indirect approach in terms of small vessel restoration and accurate Ktrans 
values in tumor. This retrospective study suggests that an acceleration rate of even 100x may be feasible with this approach. 

CONCLUSION: We have proposed a novel method to directly estimate PK parameter maps from highly under-sampled (k,t)-space data, and have 
demonstrated that it can accurately restore PK maps from 100x under-sampled brain DCE-MRI data. Higher spatio-temporal resolution and improved 
coverage may be achieved when applied to prospectively under-sampled 3D DCE MRI.  
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Table 1 Explanation of each step in the forward model.  
(1) Contrast agent concentration over time (CA(t)) is 
assumed to follow the Patlak model [3], where Cp(t) 
is the population-based AIF from [7]: 
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(2) R1 relaxation rate over time (R1(t)) is linearly 
related to CA(t), where 1ℜ  is the CA relxaxivity, R0 
is the pre-contrast R1 calculated from a T1 mapping 
sequence before DCE is performed: 
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(3) Signal intensity over time (S(t)) is related to 
R1(t) by the following equation, where TR is the 
repetition time, α is the flip angle, M0 is the 
equilibrium longitudinal magnetization that is 
estimated from the T1 mapping sequence: 
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(4) The under-sampled raw (k,t)-space data (ku(t)) is 
related to S(t) by the coil sensitivities (S), and under-
sampled Fourier transform (Fu): 
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Figure 1 The forward model of PK maps to under-sampled raw data 

Figure 2 DCE-MRI results from 20x, 60x and 100x under-sampled (k,t)-space. Direct 
reconstruction restored accurate PK values and tumor boundaries (white arrows) at all the 
acceleration rates, with only slight degradation of vp maps at 100x. The indirect method failed to 
restore accurate tumor boundary at 100x, and created artifacts (yellow arrows). 
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