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Purpose: The accurate voxel-wise estimation of white matter tissue properties from Diffusion Weighted MR benefits the building of connectivity brain 
maps and disease detection. Unlike models based on the computation of orientation distribution function1 (ODF) and fiber orientation distribution2 (FOD), 
the multi-compartment models3 provide most of the tissue parameters directly, avoiding optimization and prone-to-error threshold-based post-processing 
steps to locate the principal diffusion directions (PDD). In the parametric multi-compartment Gaussian Mixture Model (GMM) each PDD is characterized 
by the spectral decomposition of the diffusion tensors ܦ௞, where the normalized MR diffusion signal ܣ௜ = ( ௜ܵ/ܵ଴) at voxel ݎ is modelled as ܣ௜(ݎ) =∑ α୩ exp(−ܾ݃௜் ௜)ே௞ୀଵ݃(ݎ)௞ܦ , ݅ = 1,2, … ,  ௞ߙ is the number of diffusion encoding orientations (DEO) ݃௜, and ܯ ,is the number of axon bundle packs ܰ ,ܯ
denotes the volume fraction of each ܦ௞. Direct least squares (LS) fitting of the GMM presents two drawbacks:  ܰ has to be provided a priori, and it is a 
hard-to-solve starting-point-dependent non-linear optimization procedure. We present here a stable, accurate and robust-to-noise method to fit the GMM 
for a long range of crossing angles. The method improves the well-known Constrained Spherical Deconvolution method2 (CSD) both in angular 
resolution and in the estimation of the number of axon bundles at challenging configurations, namely, small crossing angles (< 45º) 4. Such detailed 
information helps to identify fanning structures in the brain that can be properly exploited by recent tractography methods5. 
Methods: The proposed Multi-resolution Discrete Search (MRDS) method is based on three key ideas: 1) A MRSD to determine the PDD’s; 2) The 
parameter-free determination of the number of axon bundles using the Bayesian Information Criterion (BIC) and 3) A Simultaneous Denoising and Fitting 
(SDF) procedure to achieve robustness with respect to noise. We impose radial symmetry ߣଵ ≫ ଶߣ = ௞ܦ  ଷ on theߣ = ,௞ߠ)ܴ ߮௞)݀݅ܽ݃(ߣଵ, ,ଶߣ ,௞ߠ)்ܴ(ଷߣ ߮௞) 
with rotation matrices ܴ(ߠ௞, ߮௞) associated to orientations (ߠ௞, ߮௞). By fixing ߣଵ, ߣଶ, ܰ and (ߠ௞, ߮௞), ݇ = 1,2, … , ܰ, the GMM is simplified to ܣ௜  =∑ ,௞ߠ)௞Φ௜ߙ ߮௞)ே௞ୀଵ = ∑ ௞ Φ௞௜ே௞ୀଵߙ , where the column Φ௞ ∈ ℝெ is a dictionary atom6. The remaining unknowns ߙ௞ are computed by minimizing the LS error ߳ = ∑ ൫ܣ௜  − ∑ ௞Φ௞௜ே௞ୀଵߙ  ൯ଶெ௜ୀଵ  where the LS ܰ × ܰ linear system s.t. 0 ≤ ௞ߙ ≤ 1, is solved by the projected Gauss-Seidel algorithm. Given a low-resolution 
orientation set ℒ with cardinality |ℒ| (Fig 1a), the first MRDS stage computes the dictionary Φ ∈ ℝெ×|ℒ| with ݏ′ߣ as in 2,6. For each combination ൫|ℒ|ே ൯, it 
minimizes ߳ for ߙ and keeps the combination of atoms with minimal ߳. Using this preliminary solution of ܰ orientations, the second MRDS stage refines 
the solution by using a high-resolution orientation set ℋ with cardinality |ℋ| ≫ |ℒ| (Fig. 1b). The method selects the orientations from ℋ that are in the 
neighboring cone of the optimal ܰ orientations from ℒ (Fig. 1c). The same GMM fitting strategy (in stage one) is repeated for the signal atoms associated 
to the selected orientations from ℋ (Fig. 1d).  The method applies the algorithm for ܰ = 1,  The model selection problem is then solved by keeping .3 ݕ 2
the ܰ that minimizes BIC7 = ଶߪ/2߳ + ݌ ln(ܯ), where ݌ = 5ܰ is the degrees-of-freedom for each model, and ߪଶ is the noise’s variance. An SDF strategy, 
similar to the simultaneous sparse coding8, is applied to reduce the effect of the noise in the MR signal. For each voxel ݎ, let ௥ࣨ be the set of voxels in its 35 ܦ × 5 × 5 spatial neighborhood, such that the MSE between their ܣ signals and those of the reference voxel ݎ is smaller than 2ߪଶ. The voxels in ௥ࣨ 
are jointly used to fit the GMM (with the MRDS), and the same set of atoms is assigned to all voxels in ௥ࣨ, (although the ߙ௞ ‘s are computed 
independently for each voxel). After this process is completed, each voxel ݎ will have several models (sets of atoms) assigned to it (one for each 
neighborhood it belongs to), so for each ݎ, voting and averaging procedures are used to compute the number of atoms and the model parameters, resp. 
Results: The 32 × 32 × 1 synthetic dataset schematized in Fig. 2 comprises two fiber bundles with crossing angles between 0° and 90°, equal volume 
fractions, and ܣܨ = 0.77 in the underlying Gaussian model for the individual tracts. 66 single-shell DEO with b= 3000 ݏ/݉݉ଶ are used. The simulated 
signals were corrupted by Rician noise with SNR on ܵ଴ equal to 20. We compare with the CSD algorithm2 (code provided by the author): ݈௠௔௫ = 10; 
threshold for false positive peaks on the FOD equal to 0.2 of the maximum value9. We compute the success rate (SR: fraction of voxels with the correct 
number of fiber populations), and the Average Angular Error (AAE) w.r.t. the ground truth. Figs. 3a and 3b show the results for the configuration depicted 
in Fig. 2. We note that MRDS and MRDS-SDF present a higher SR at large (>40º) and small (25° to 40°) separation angles, while CSD systematically 
reports one fiber bundle on angles <40°. For the AAE, the CSD and the MRDS have similar results (below 5°) for crossing angles greater than 55°. In the 
interval 40° − 55° we observe a big increase of the AAE for the CSD (up to 16°) while the MRDS keeps it smaller than 6°. By using MRDS-SDF the AAE 
decreases achieving errors below 3° for crossing angles greater than 30°. Maps of estimated N for CSD and MRDS-SDF on data field of Fig. 2 are 
shown in Fig 5. We explore the sensitivity of the methods to different ߣ values on ܴܵܰ = 20 data, since the user must provide them in the initial 
estimation step (actual ߣ’s are [1 × 10ିଷ, 0.2 × 10ିଷ]). Fig. 4 shows results for 50° crossing angle, ߣଵ and ߣଶ vary in the ranges [0.5,1.5] × 10ିଷ 
and [0.0,0.3] × 10ିଷ. SR and AAE are plotted on first and second rows, respectively. Columns of Figs. 4a/4d, 4b/4e and 4c/4f show the sensitivity of 
CSD, MRDS, and MRDS-SDF. We observe that both versions of our proposal report a SR of 100% and a better AAE on a broader region than CSD. The 
results of MRDS above remain consistent with an exhaustive validation with 1000 trials per crossing angle in the range [0º, 90º] (not shown).  Fig. 6 and 
7 present the ODFs of MRDS-SDF on the in vivo multi-shell (b1=700,b2=3000) human brain data provided with the NODDI toolbox 
(mig.cs.ucl.ac.uk/index.php?n=Tutorial.NODDImatlab); the PDDS are spatially coherent and capture the expected complexity at the crossing of corpus 
callosum, corticospinal tract  and superior longitudinal fasciculus (ROIs on Fig. 8).  

 
Conclusions: MRDS accurately estimates the number of compartments and the PDD’s of the GMM, even at small crossing angles, and is robust to 
variations on the chosen ߣ values. On all experiments, our proposal presents better performance than CSD, with MRDS-SDF presenting the best results. 
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