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Purpose: The accurate voxel-wise estimation of white matter tissue properties from Diffusion Weighted MR benefits the building of connectivity brain
maps and disease detection. Unlike models based on the computation of orientation distribution function' (ODF) and fiber orientation distribution? (FOD),
the multi-compartment models® provide most of the tissue parameters directly, avoiding optimization and prone-to-error threshold-based post-processing
steps to locate the principal diffusion directions (PDD). In the parametric multi-compartment Gaussian Mixture Model (GMM) each PDD is characterized
by the spectral decomposition of the diffusion tensors D,, where the normalized MR diffusion signal A; = (S;/S,) at voxel r is modelled as 4;(r) =
YN agexp(—=bgIDy(r)g:),i =12,..,M, N is the number of axon bundle packs, M is the number of diffusion encoding orientations (DEO) g;, and «;
denotes the volume fraction of each D,. Direct least squares (LS) fitting of the GMM presents two drawbacks: N has to be provided a priori, and it is a
hard-to-solve starting-point-dependent non-linear optimization procedure. We present here a stable, accurate and robust-to-noise method to fit the GMM
for a long range of crossing angles. The method improves the well-known Constrained Spherical Deconvolution method® (CSD) both in angular
resolution and in the estimation of the number of axon bundles at challenging configurations, namely, small crossing angles (< 45°) *. Such detailed
information helps to identify fanning structures in the brain that can be properly exploited by recent tractography methods®.

Methods: The proposed Multi-resolution Discrete Search (MRDS) method is based on three key ideas: 1) A MRSD to determine the PDD’s; 2) The
parameter-free determination of the number of axon bundles using the Bayesian Information Criterion (BIC) and 3) A Simultaneous Denoising and Fitting
(SDF) procedure to achieve robustness with respect to noise. We impose radial symmetry 1, > 1, = 1; on the D, = R(8,, ¢, )diag(dy, 25, A3)RT (0, ¢1)
with rotation matrices R(6,,¢,) associated to orientations (6,,¢,). By fixing1,,1,, N and (6,,¢,), k =12,..,N, the GMM is simplified to A; =
TN ®; (0, 9i) = YN, a;, DL, where the column @, € R is a dictionary atom®. The remaining unknowns a,, are computed by minimizing the LS error
€ =XM1 (4 —Ih-; a, @ )2 where the LS N x N linear system s.t. 0 < a; < 1, is solved by the projected Gauss-Seidel algorithm. Given a low-resolution
orientation set £ with cardinality || (Fig 1a), the first MRDS stage computes the dictionary ® € Rl with 1's as in 2°. For each combination ('), it

minimizes e for @ and keeps the combination of atoms with minimal €. Using this preliminary solution of N orientations, the second MRDS stage refines
the solution by using a high-resolution orientation set H with cardinality |%'| > |£| (Fig. 1b). The method selects the orientations from # that are in the
neighboring cone of the optimal N orientations from £ (Fig. 1c). The same GMM fitting strategy (in stage one) is repeated for the signal atoms associated
to the selected orientations from H (Fig. 1d). The method applies the algorithm for N = 1,2 y 3. The model selection problem is then solved by keeping
the N that minimizes BIC” = 2¢/a2 + pIn(M), where p = 5N is the degrees-of-freedom for each model, and 2 is the noise’s variance. An SDF strategy,
similar to the simultaneous sparse coding’, is applied to reduce the effect of the noise in the MR signal. For each voxel r, let V;. be the set of voxels in its
3D 5 x5 x 5 spatial neighborhood, such that the MSE between their 4 signals and those of the reference voxel r is smaller than 2a2. The voxels in ;.
are jointly used to fit the GMM (with the MRDS), and the same set of atoms is assigned to all voxels in ., (although the «, ‘s are computed
independently for each voxel). After this process is completed, each voxel r will have several models (sets of atoms) assigned to it (one for each
neighborhood it belongs to), so for each r, voting and averaging procedures are used to compute the number of atoms and the model parameters, resp.

Results: The 32 x 32 x 1 synthetic dataset schematized in Fig. 2 comprises two fiber bundles with crossing angles between 0° and 90°, equal volume
fractions, and FA = 0.77 in the underlying Gaussian model for the individual tracts. 66 single-shell DEO W|th b=3000 s/mm? are used. The simulated
signals were corrupted by Rician noise with SNR on S, equal to 20. We compare with the CSD algorithm?® (code provided by the author): I, = 10;
threshold for false positive peaks on the FOD equal to 0.2 of the maximum value®. We compute the success rate (SR: fraction of voxels with the correct
number of fiber populations), and the Average Angular Error (AAE) w.r.t. the ground truth. Figs. 3a and 3b show the results for the configuration depicted
in Fig. 2. We note that MRDS and MRDS-SDF present a higher SR at large (>40°) and small (25° to 40°) separation angles, while CSD systematically
reports one fiber bundle on angles <40°. For the AAE, the CSD and the MRDS have similar results (below 5°) for crossing angles greater than 55°. In the
interval 40° — 55° we observe a big increase of the AAE for the CSD (up to 16°) while the MRDS keeps it smaller than 6°. By using MRDS-SDF the AAE
decreases achieving errors below 3° for crossing angles greater than 30°. Maps of estimated N for CSD and MRDS-SDF on data field of Fig. 2 are
shown in Fig 5. We explore the sensitivity of the methods to different 1 values on SNR = 20 data, since the user must provide them in the initial
estimation step (actual A’s are [1x 1073,0.2 x 1073]). Fig. 4 shows results for 50° crossing angle, 4, and 1, vary in the ranges [0.5,1.5] x 1073
and [0.0,0.3] x 1073. SR and AAE are plotted on first and second rows, respectively. Columns of Figs. 4a/4d, 4b/4e and 4c/4f show the sensitivity of
CSD, MRDS, and MRDS-SDF. We observe that both versions of our proposal report a SR of 100% and a better AAE on a broader region than CSD. The
results of MRDS above remain consistent with an exhaustive validation with 1000 trials per crossing angle in the range [0%, 90°] (not shown). Fig. 6 and
7 present the ODFs of MRDS-SDF on the in vivo multi-shell (b;=700,b,=3000) human brain data provided with the NODDI toolbox
(mig.cs.ucl.ac.uk/index.php?n=Tutorial. NODDImatlab); the PDDS are spatially coherent and capture the expected complexity at the crossing of corpus
callosum, corticospinal tract and superior longitudinal fasctculus (ROIs on Fig. 8).
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Conclusions: MRDS accurately estimates the number of compartments and the PDD’s of the GMM, even at small crossmg angles and is robust to
variations on the chosen 2 values. On all experiments, our proposal presents better performance than CSD, with MRDS-SDF presenting the best results.
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