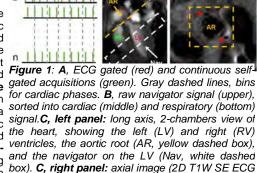

## Self-gated dynamic contrast enhanced (DCE) MRI with compressed sensing acceleration to quantify permeability in the aortic root of atherosclerotic mice

Claudia Calcagno<sup>1</sup>, Chiara Giannarelli<sup>2</sup>, Abdallah G Motaal<sup>3</sup>, Matthias Nahrendorf<sup>4</sup>, Willem JM Mulder<sup>5,6</sup>, Zahi A Fayad<sup>1</sup>, and Gustav J Strijkers<sup>3</sup> Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States, Department of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States, <sup>3</sup>Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands, Netherlands, <sup>4</sup>Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts, United States, <sup>5</sup>Icahn School of Medicine at Mount Sinai, New York, NY, United States, <sup>6</sup>Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands, Netherlands

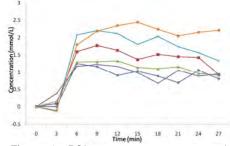

TARGET AUDIENCE: Investigators interested in the in vivo quantification of atherosclerotic plaque permeability using non-invasive MRI.

PURPOSE: High-risk atherosclerotic plaques are characterized by increased endothelial permeability due to inflammation<sup>1</sup>. DCE-MRI (dynamic contrast enhanced magnetic resonance imaging) has previously been applied in atherosclerotic patients<sup>2</sup> and rabbits<sup>3-4</sup> to quantify plaque permeability. Nevertheless, the relationship between endothelial permeability and specific genetic, cellular and molecular pathways in the atherosclerotic cascade remains to be investigated. The inflamed atherosclerotic plaque in the aortic root of the mouse presents an ideal model to study this relationship, since genetic, molecular and cellular assays are well established in mice. However, DCE-MRI in the aortic root of mice is challenging, due to the small dimensions, rapid blood flow through the valves, and high heart rate. The aim of this study was therefore to develop a robust DCE-MRI protocol to investigate endothelial permeability in the mouse aortic root.

METHODS: A novel self-gated fast low angle shot (FLASH) sequence was applied to overcome the described challenges in DCE-MRI of the mouse aortic root<sup>5-6</sup>. Unlike conventional cardiac and/or respiratory triggered techniques, this sequence acquires MR data continuously and asynchronously with the periodic cardiac and respiratory motion(Fig 1A, green bars). After the acquisition, self-gated data are binned into complete MR images that correspond to different cardiac phases (Fig 1A, gray dashed lines), and temporal frames. Binning is accomplished based on the signal of a navigator echo (Fig 1B), positioned over the left ventricle (Fig 1C, white dashed box). The number of reconstructed cardiac phases and temporal frames can be chosen



arbitrarily, although it is limited by the total amount of data acquired. To maximize the number of reconstructed cardiac phases and temporal frames, we have combined self-gated DCE-MRI with prospective compressed sensing undersampling<sup>7-8</sup>. For this strategy, we used a weighted sampling strategy, which acquires the center of k-space more often than the rest of the lines in a Gaussian distribution scheme. Using this acquisition, ApoE -/- atherosclerotic mice (n=6, 7 months on Western Diet) were imaged on a 7T pre-clinical MR scanner using a 35 mm volume coil for signal reception. After scout imaging to locate the aortic root (Fig 1C), self-gated DCE-MRI was acquired continuously for 30 minutes. After the first




Red stars, coronary arteries. 3 minutes, 0.3 mmol/Kg of Gd-DTPA was injected through the tail vein. Imaging parameters are detailed in Table 1.

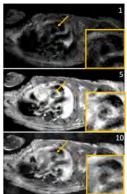
triggered) of the AR (yellow dashed box)

corresponding to the slice shown in the left panel.

using spatial and temporal total variation (TV) as sparsifying transforms<sup>7</sup>. 15 cardiac phases and 10 temporal dynamic frames were reconstructed, for a total of 150 images. For each reconstruction, a region of interest (ROI) encompassing the



(selected cardiac phase).


aortic root was selected in one cardiac frame, and propagated throughout the 10 dynamic frames to extract theenhancement curves. MR signal was converted to contrast agent concentration using a linearity assumption.

Using off-line software written in Matlab, self-gated DCE-MRI was reconstructed using compressed sensing (Fig 2),

RESULTS: We were able to successfully reconstruct 15 cardiac phases and 10 dynamic frames from all acquisitions. For each acquisition, at least one cardiac phase that would clearly show the vessel wall of the aortic root could be identified. Fig 2 shows an example of such a cardiac phase: three temporal frames are depicted. Signal enhancement can be clearly seen in temporal frames 5 and 10, acquired after contrast agent injection, with respect to temporal dynamic 1, acquired before contrast injection. This pattern of temporal enhancement was found to be consistent across all animals. This is exemplified in Fig 3, where ROI concentration curves Figure 3: ROI contrast agent concentration from each animal (and from one cardiac phase) are represented.

curves from the aortic root of different mice DISCUSSION and CONCLUSIONS: Our results demonstrate the feasibility of self-gated DCE-MRI of the mouse aortic root with prospective Figure 2: Compressed compressed sensing acceleration. The continuous, stochastic nature of the sensing reconstruction of

self-gated acquisition intrinsically allows reconstructing an arbitrary number of phases during the cardiac cycle, and an self-gated DCE-MRI of arbitrary number of frames during the dynamic acquisition. Here, we reconstruct 15 cardiac phases, and 10 temporal dynamic the aortic root. Orange frames. We foresee that additional optimization of the k-space sampling scheme or of the image reconstruction algorithms arrow may allow accelerating this acquisition even further, to improve the accuracy of permeability quantification in the mouse aortic inserts, root. We are currently implementing these approaches to facilitate the extraction of quantitative permeability indices, such as Numbers K<sup>trans</sup>. These measures will be correlated with genetic, molecular and cellular assays in the root, and will serve as read-outs of temporal plaque progression or regression after anti-atherosclerotic therapy. REFERENCES:1. Virmani et al, J Am Coll Cardiol 2006; same cardiac phase was 2.Kerwin WS et al Circulation 2003;3. Chen H Magn Reson Med 2012; 4.Calcagno C et al ATVB 2008; 5.Coolen BF et al depicted. Magn Reson Med 2013; 6.Den Adel B et al PLoS One 2013; 7.Motaal AG et al NMR in biomedicine 2012; 8.Lustig M et al Magn Reson Med 2007.



and zoomed-in aortic root. indicate frames. The