Functional consequences of neurite orientation dispersion and density in humans across the adult lifespan
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Introduction: Dendrites are key sites for synaptic integration and neuronal connectivity in the brain. Post-mortem studies have demonstrated that morphological
alterations in dendritic structures are hallmarks of aging in gray matter (GM), characterized by reduced complexity and regression of the dendritic tree in neocortex. In
contrast, dendritic growth and increased dendritic complexity occur within paleocortex (parahippocampal gyrus) and archicortex (hippocampus) in successful human
aging and senescent animals. Recent advances in diffusion-weighted magnetic resonance imaging have opened new vistas to examine brain tissue microstructure in
vivo. These techniques utilize the diffusion properties of water molecules to estimate underlying cellular microstructural properties of brain tissue in the context of
specific biophysical models. Neurite-orientation dispersion and density imaging (NODDI) is a recently proposed model that extends application of diffusion imaging
from white matter to the GM tissue microstructure'. NODDI indexes neuritic density and dispersion of neurites in the brain tissue with intra-neurite volume fraction and
orientation dispersion index, respectively. These indices can be used to assess dendritic organization in vivo in humans'. Here we adopted a GM-based spatial statistics

(GBSS) approach’ for voxel-wise analysis of NODDI-derived indices within the GM, including enhanced g0

registration steps and customization to take full advantage of the potential of the NODDI model.

Furthermore, we aimed to uncover the functional consequences of age-related GM microstructural changes

using fMRI approaches, as well as assessment of cognitive performance in the same individuals.

Overview of NODDI-GBSS: As in other voxel-based approaches, accurate cross-subject alignment of

anatomically related regions is of paramount importance. This issue is even more critical with diffusion

imaging analysis of the cortical regions (cerebellar and cerebral cortex), given the relatively thin cortical i R

structures and sensitivity of diffusion metrics to partial volume contamination. To overcome these caveats, Sel : _ A .

GBSS adapts the tract-based spatial statistics (TBSS)** framework for GM analysis by skeletonizing the - e Figure 1

GM and projecting diffusion metrics from the most probable local GM voxel on to the skeleton for group

comparison. Unlike the original GBSS pipeline that tissue classification takes place in the structural images,

we directly segmented brain tissues using the diffusion data. Here is a brief overview (Fig. 1):

(i) After preprocessing, NODDI and diffusion tensor models were fitted to the diffusion data.

(ii) CSF partial volume in each voxel was directly estimated using the NODDI model parameter, fCSF~.

(iii) White matter segmentation was carried out on the FA images using Atropos
(http://picsl.upenn.edu/software/ants/) for two-class classification (white matter/non-white matter) to
derive fraction of white matter (fWM). Fraction of GM (fGM) in each voxel was determined by simply
subtracting fractions of CSF and white matter from 1.

(iv) Diffusion parameter maps do not have sufficient gray/white/CSF contrast to allow for accurate registration of cortical GM. Thus, we generated maps with a contrast
similar to T1 images (pseudo-T1 images), by multiplying partial volume estimations of each tissue class by their corresponding contrast.

(v) For group-wise nonlinear registration we used the buildtemplateparallel.sh script in the ANTS software package v1.9. Aligned GM probability maps were averaged
across individuals and thinned (skeletonized) so that the skeleton represents the center of highly probable GM voxels. Each subject’s (aligned) ODI and fGM image
were then projected onto the skeleton. This is achieved, for each skeleton voxel, by searching perpendicular to the skeleton structure for the most probable local GM
voxel’. Voxel-wise analysis was carried out using randomise, implemented in FSL.

CAMH Aging Study: Forty-five healthy participants across the adult lifespan (21-84) years of age; female/male: 24/21) were recruited at the Centre for Addiction and

Mental Health (CAMH) in Toronto. Diffusion, structural and functional images were acquired for all subjects on a 3 Tesla GE Discovery MR750 system (General

Electric, Milwaukee, WI) equipped with an 8-channel head coil. For the diffusion imaging, a multi-shell protocol was acquired along 30 non-collinear directions at 3 b-

values (1000, 3000, 4500 s/mm?) in addition to 15 interspersed b=0 images using a single shot echo-planar sequence. The acquisition parameters were as follows:

TE/TR=108/12000 ms, voxel dimension of 2x2x2 mm?, 82 slices. Resting-state functional scans were acquired using an axial spiral fMRI acquisition with the
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let their mind wander. All subjects also underwent a battery of :

cognitive testing. Cortical thickness measurement, and
subcortical segmentation were carried out on structural T,
images using the FreeSurfer toolkit v5.1. After denoising
functional data using FMRIB's ICA-based Xnoiseifier (FIX)
v1.0.6. Functional connectivity analysis was performed using
MELODIC and dual-regression analysis.
Results: Using NODDI-GBSS we found a significant age-
related decrease in neocortical-ODI (most prominently in frontoparietal regions), while increased ODI was observed in cerebellum with advancing age (Fig.
Figure 3 2) We replicated these findings using follow up region-of-interest analysis and also observed a nonlinear increase in hippocampal ODI (Fig.2). Neocortical-
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fractional anisotropy) for the prediction of
chronological age in the same individuals.
Functional connectivity of brain resting-state
networks with known age-related susceptibility
(default-mode [DMN] and visual association
networks [VAN]) was significantly associated
with GM ODI sampled from these networks,
while the task-positive networks tended to show
no association or even an opposite effect (Fig.
3). Frontal pole-ODI mediated negative impacts of age on executive function, while hippocampal-ODI mediated its protective effects.

Interpretation: NODDI-GBSS provides a voxel-wise whole brain framework for identifying GM microstructural differences. Our in vivo findings align very closely
with the postmortem data, and provide evidence for vulnerability and compensatory neural mechanisms of cognitive-aging in gray matter microstructure that have
functional and cognitive impact in vivo.
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