
From diffusion signal moments to neurite diffusivities, volume fraction and orientation distribution: An exact solution 
Dmitry S. Novikov1, Ileana O. Jelescu1, and Els Fieremans1 

1Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, NY, United States 
 

Purpose: To determine brain microstructure parameters from dMRI signal moments, thereby avoiding nonlinear fitting. Quantifying brain 
microstructure from dMRI is challenging. While dMRI signal is a fairly featureless function in the q-space, the number of parameters necessary to 
characterize multi-compartmental diffusion in the brain1-4 can easily exceed 10, making this problem prone to overfitting. Nonlinear fitting in such 
parameter space generally fails, especially at clinically-limited SNR, even with a number of q-space points exceeding the number of parameters by an 
order of magnitude. This is a fundamental problem, which severely limits our ability to quantify tissue properties in the clinic, and so far has only 
been avoided by fixing most of model parameters to a priori values3,5. An alternative to nonlinear fitting is to relate the low-b metrics, such as 
diffusion and kurtosis tensors, to parameters of nonlinear models; however, this has only been done in a simple geometry of a well-aligned fiber 
bundle6 that does not represent most of the brain. Here we relate all diffusion signal moments to all fiber orientation and structure 
characteristics exactly, reducing parameter estimation to a linear problem. 

Methods: We assume a broadly accepted model1-4 of dMRI signal S in direction g, representing neurites (axons and dendrites) by straight segments, 

which are characterized by diffusivities Da (inside), ܦ௘|| and ܦ௘ୄ  (outside), neurite water fraction f, and orientation distribution function (ODF) :                   
Here ∆ܦ௘ ൌ ||௘ܦ െ ௘ୄܦ . We relate these 3+(Lmax+1)(Lmax+2)/2 tissue parameters per voxel, where Lmax is the maximum order of spherical harmonics 

(SH) for the ODF, to the Lmax(Lmax+2)(Lmax+4)/12+Lmax(Lmax+6)/8 components of the fully symmetric moment tensors ܯ௞భ…௞೗ሺ௟ሻ  of the signal 
determined up to l=Lmax. Here M(2) is the overall diffusion tensor, M(4) is the combination of kurtosis and diffusion tensors, etc. Our key idea is to 

work in the basis of symmetric trace-free (STF) tensors7  which realize 
irreducible representations of the rotation group SO(3), and generate SHs 

. Projecting moments  
onto the STF basis, we get the system (1) of 5 equations involving the maximally 
symmetric parts of the 2nd, 4th, and 6th order moments, with 5 unknowns. Here, p20 = 
(3〈cos2θ〉 − 1)/2 ~ Y20(θ,ϕ) is the ODF average of the 2nd Legendre polynomial. Eqs 
(1) form the minimal system to determine all compartment diffusivities and 
neurite water fraction f. The system yields two branches of solutions f±(p20), Fig. 1. 
These branches, at the level of M(2) and M(4), provide a highly degenerate family of 
solutions, thereby determining two narrow and sharply-turning trenches in the 
original multi-dimensional nonlinear optimization landscape (Fig. 1A), revealing 
the fundamental reason of overfitting in brain microstructure models. At this level, the 
Lmax=4 case is indeterminate, even though 21 diffusion kurtosis imaging (DKI) 
parameters exceed 18 tissue parameters. Remarkably, the shallow minimum in one of 
the trenches, Fig. 1B, and thereby the solution to the full problem, is only determined 
after including the 6th order moment M(6). This is why only the special case of an 
aligned fiber bundle can be resolved with DKI alone,6 and why nonlinear fitting is so 

sensitive to noise. Once f, Da, ܦ௘||, ܦ௘ୄ , and p20 are found, all other ODF SH 
coefficients Plm follow from Eq (2), providing the analytical solution up to all orders.  

Results: We tested our solution on the ground truth of 3 neurite segments at θ=37o relative to z-axis, with relative weights 2:1:1 and common 
parameters f=0.32, Da=1.15, ܦ௘||=2.85, ܦ௘ୄ =1.1 (all units μm and ms), using simulated acquisition of 3 shells x 64 dirs, together with 10 b=0, at both 
SNR = ∞ and 50. Moments were determined via cumulants using b-matrix pseudoinversion up to Lmax=6. Fig. 2 shows that, remarkably, going to too 
high b-values reduces accuracy of the ODF reconstruction, as the moments are less accurately found, while precision suffers at low b due to noise. In 
Fig. 3, we applied our framework to the Human connectome project (HCP) data set. We see that, due to the noise, the choice between the branches 
f±(p20) is challenging; sometimes, neither branch has a global minimum. Interestingly, more often the branch with a global minimum is the one where 
Da > ܦ௘||, especially away from highly aligned tracts. For now, we do not have an insight into the ground truth and the way to select the right branch. 

Discussion: We have reduced finding dozens of tissue parameters with nonlinear fitting down to the selection of one of the two branches of an exact 
relation between diffusion moments and tissue properties. While this selection is still nontrivial, it seems far more promising than relying on 
nonlinear fitting to find a global minimum in a tortuous high-dimensional space. The fundamental issue of the near-degeneracy of solutions also 
prompts us to re-optimize dMRI acquisition. On the one hand, 2 shells in the q-space (DKI) is not enough. On the other hand, as moments are 

derivatives of S(b) at b=0, our solution suggests not 
going too far in b, preserving SNR and enabling robust 
fits of ܯ௞భ…௞೗ሺ௟ሻ . Further work will focus on finding an 
optimal intermediate multi-shell acquisition range 
where the signal is not destroyed, yet enough moments, 
e.g. Lmax ~ 6-8, are determined. With an optimized 
acquisition, our results can foster clinical translation of 
advanced dMRI models, as well as serve a starting 
point for global mesoscopic fiber tracking.8 

 

Fig. 1: A, minimization landscape 
for finding the solution of Eqs 
(1). B, profile along trenches 
f±(p20), the roots of a quadratic 
equation determined after 
exclusion of 3 diffusivities. Here, 
f− gives the true minimum. Eqs 
(1) are thus reduced to finding a 
zero, or minimizing, a 1-variable 
function defined by M(6)00 
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Fig. 2: Effect of SNR and acquisition on ODF. A-C: 
SNR=∞; D-F: SNR=50. Shell b-values: A,D: 0.1,0.2,0.3; 
B,E: 0.33,0.67,1.0; C,F: 1,2,3. Small b give the highest 
accuracy but the lowest precision in ODF reconstruction.  
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Fig. 3: Application to HCP data (lower 
quarter of an axial slice). Solutions 1,2 
correspond to branches f±, Fig. 1. 
Background corresponds to voxels 
where the branch has no minimum.  
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