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Purpose: To determine brain microstructure parameters from dMRI signal moments, thereby avoiding nonlinear fitting. Quantifying brain
microstructure from dMRI is chalenging. While dMRI signd is a fairly featureless function in the g-space, the number of parameters necessary to
characterize multi-compartmental diffusion in the brain'™ can easily exceed 10, making this problem prone to overfitting. Nonlinear fitting in such
parameter space generaly fails, especialy at clinically-limited SNR, even with anumber of g-space points exceeding the number of parameters by an
order of magnitude. Thisis afundamental problem, which severely limits our ability to quantify tissue properties in the clinic, and so far has only
been avoided by fixing most of model parameters to a priori values®*®. An alternative to nonlinear fitting is to relate the low-b metrics, such as
diffusion and kurtosis tensors, to parameters of nonlinear models, however, this has only been done in a simple geometry of a well-aligned fiber
bundle® that does not represent most of the brain. Here we relate all diffusion signal moments to all fiber orientation and structure
characteristics exactly, reducing parameter estimation to alinear problem.

M ethods. We assume a broadly accepted model** of dMRI signal Sin direction g, representing neurites (axons and dendrites) by straight segments,
which are characterized by diffusivities D, (inside), DélzI and D (outside), neurite water fraction f, and orientation distribution function (ODF) P(n):
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Here AD, = D,L' — DZ. We relate these 3+(L 1) (Lne+2)/2 tissue parameters per voxel, where L iS the maximum order of spherical harmonics
(SH) for the ODF, to the Lya(Lmaxt2)(Lmaxt4)/12+L a(Limaxt6)/8 components of the fully symmetric moment tensors M,El) K of the signal
determined up to I=L,4. Here M@ is the overall diffusion tensor, M® is the combination of kurtosis and diffusion tensors, etc. Our key idea is to

work in the basis of symmetric trace-free (STF) tensors’ yh..,kz which redlize
irreducible representations of the rotation group SO(3), and generate SHs
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onto the STF basis, we get the system (1) of 5 equations involving the maximally
M@0 _ [ D2+ (1- 1) (, DIAD, 1 A Dﬁz)} symmetric parts of the 2", 4™, and 6™ order moments, with 5 unknowns. Here, py =
3 (3(cos’) — 1)/2 ~ Yax(6,¢) is the ODF average of the 2™ Legendre polynomial. Eqs

MO®® = D+ (1—f) [7D33+7D¥ADC+ ?D:AD(,HADQ] . (1) form the minimal system to determine all compartment diffusivities and
- ° neurite water fraction f. The system yields two branches of solutions f.(p), Fig. 1.
MO [f D4 (1— A Dﬂ:/z] 2) These branches, at the level of M@ and M®, provide a highly degenerate family of
solutions, thereby determining two narrow and sharply-turning trenches in the

Fig. 1: A, minimization landscape ~ original multi-dimensional nonlinear optimization landscape (Fig. 1A), reveding

for finding the solution of Eqs the fundamental reason of overfitting in brain microstructure models. At thislevel, the
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fi(Pz0), the roots of a quadratic  parameters exceed 18 tissue parameters. Remarkably, the shallow minimum in one of
equla‘“‘.’” ] gadgffm'.m?‘tj. Haﬂer the trenches, Fig. 1B, and thereby the solution to the full problem, is only determined
exclusion of 3 dITTUSVINES. HE&, — ater including the 6™ order moment M@, This is why only the special case of an
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Results: We tested our sol utlon on the ground truth of 3 neurite segments at 6=37° relative to z-axis, with relative weights 2:1:1 and common
parameters f=0.32, D,=1.15, D =2.85, DF=1.1 (all units um and ms), using simulated acquisition of 3 shells x 64 dirs, together with 10 b=0, at both
SNR =« and 50. Moments were determined via cumulants using b-matrix pseudoinversion up to L,=6. Fig. 2 shows that, remarkably, going to too
high b-values reduces accuracy of the ODF reconstruction, as the moments are less accurately found, while precision suffers at low b due to noise. In
Fig. 3, we applied our framework to the Human connectome project (HCP) data set. We see that, due to the noise, the choice between the branches
f.(pag) is challenging; sometimes, neither branch has a global minimum. Interestingly, more often the branch with a global minimum is the one where
D,> D, especidly away from highly aligned tracts. For now, we do not have an insight into the ground truth and the way to select the right branch.

Discussion: We have reduced finding dozens of tissue parameters with nonlinear fitting down to the selection of one of the two branches of an exact
relation between diffusion moments and tissue properties. While this selection is still nontrivial, it seems far more promising than relying on
nonlinear fitting to find a global minimum in a tortuous high-dimensional space. The fundamental issue of the near-degeneracy of solutions also
prompts us to re-optimize dMRI acquisition. On the one hand, 2 shells in the g-space (DKI) is not enough. On the other hand, as moments are
derivatives of §b) at b=0, our solution suggests not
A B C going too far in b, preserving SNR and enabling robust
fits of M . Further work will focus on finding an
optimal |ntermed|ate multi-shell acquisition range
where the signal is not destroyed, yet enough moments,
eg. Lnx ~ 6-8, are determined. With an optimized
acquisition, our results can foster clinical translation of
advanced dMRI models, as well as serve a starting
point for global mesoscopic fiber tracking.®
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Fig. 3: Application to HCP data (lower
Fig. 2: Effect of SNR and acquisition on ODF. A-C:  quarter of an axial dlice). Solutions 1,2
SNR=c; D-F: SNR=50. Shell b-values: A,D: 0.1,0.2,0.3;  correspond to branchesf., Fig. 1.
B,E: 0.33,0.67,1.0; C,F: 1,2,3. Small b give the highest  Background corresponds to voxels
accuracy but the lowest precision in ODF reconstruction.  where the branch has no minimum.



