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TARGET AUDIENCE: Scientists interested in quantitative relaxometry.

PURPOSE: T, mapping requires the acquisition of a series of T, weighted images prior to the estimation of the T; map'. Inter-frame subject motion and induced motion
artifacts by MR scanner instabilities require alignment of the images. In T; mapping, the conventional approach involves registration prior to model fitting, i.e., a two-
step approach®. This approach has serious drawbacks for accurate and precise T, map estimation. First, because the registration step is model-blind and does not account
for inherent temporal intensity changes in the series of T, weighted images, motion may not be properly corrected. Secondly, the inherent image interpolation in the

Mnitialization T TTTTTToooTTmmTToooTog registration step will affect the statistical distribution of the images, and, if not correctly accounted for in the
E[ Voxel-wise T, } [ Background ] 1 T, fitting, will introduce bias.

¢ Zegisieation S o notse estimots | METHOD: We propose a simultaneous group-wise rigid registration and T, estimation method using a
[ %y SR | Maximum Likelihood (ML) approach® for brain T, mapping, thereby constructing a unified framework and
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circumventing the previously mentioned problems of the conventional two-step approach. Let N be the
number of T, weighted images and s, € RM the vector which represents the n-th acquired T, weighted
image, where M is the number of voxels. The noiseless and motion-free n-th T; weighted image is denoted as
fn € RM, being a function of the T map, T; € RM, and other parameters ¥ (proton density, flip angle,...).
The motion affected volume is modeled as f, = Hg fn(T1,v) where Hg € RM*M i5 a linear operator
defining rotation and translation* according to the n-th rigid transformation parameters ,, . Assuming noise
independence between acquisitions, the ML estimator of the T; and y maps and the motion parameters 8 =
[67,67%,...,05]" is given by {T,7,0} = argmaxr, ;9 Y-110gDs, (Sp; Frn, 0) where pg, (Sp; Frn,0) is the

AL esimation joint-probability density function of the n-th acquired T, weighted image. The noise parameter o is assumed
{T1.7} = argmaxr, Zmlog Ps, Gni Ho, fn(T1,¥),6) to be known or can be estimated a priori. Because of the huge dimensionality of this maximization problem,
IS===——=mmmme e e e e e ' we propose a splitting-type algorithm which combines a global motion ML estimation step for 8 (followed by
an internal re-alignment step) with a voxel-wise ML estimation of T; and y. The flowchart of the proposed
algorithm is shown in Fig.1. A rough estimation of T, and y is provided by performing a prior group-wise registration with Mutual Information (MI) and subsequently a
voxel-wise T; ML estimation. An initial motion estimate is obtained by substituting the initial estimates of the relaxation parameters in the global log-likelihood
function and solving the maximization problem for 8. The re-alignment step produces a roughly corrected set of images by applying the inverse of the motion operator
Hg, . Voxel-wise ML estimation is then applied, providing more refined T and y estimates. Both relaxation parameter maps serve again as input to the global motion
ML estimation, yielding more precise motion estimation. The process is repeated until the difference between consecutive motion estimates iterations is smaller than a
given tolerance level, providing a final motion corrected T; map. The proposed method was evaluated both with synthetic and real experiments. The synthetic data were

generated to mimic magnitude data, acquired with the Inversion Recovery (IR) spin echo sequence with a single coil. Therefore, ¥ = {a, b} and f,,(T,,¥) =a+be
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e ™1, with TI, being the n-th inversion time, o the point-wise multiplication operator and Ds, (Sns f,,, o) a Rician probability
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density function® with envelope parameter |fn| and noise standard deviation o . We compared the performance of the proposed
method with the conventional two-step approach used in our method’s initialization. A 2D (M =128x128) proton density and
T, map were created based on values provided in BrainWeb®. f,(T;,y) was created with ¥ = {a, b} defined as in Barral et
al® with TI,, n=1,..,N (N = 18) equally spaced between 200 ms and 5000 ms. Motion parameters were created
following a random walk model without drift, with the standard deviation of the x-shift, y-shift, and rotation angle, 0.1, 0.1
pixels and 0.8°, respectively. The signal-to-noise ratio (SNR) was defined as the spatial mean of the proton density map
divided by a. For each SNR between 10 and 90, 20 independent Rician realizations were created. Average absolute bias and
root Mean Square Error (rMSE) between the estimated T, map and the ground truth were calculated using a mask of the brain
interior. Real data: One coronal slice of a single-coil acquisition with IR Echo Planar Imaging (TR=10s, 128x128 acquisition
matrix, TL,, n =1, ..., N (N = 18) between 20 ms and 6000ms) of an ex-vivo rat brain was acquired. The T, weighted images
suffered from motion artifacts due to scanner instabilities.
] ] ~ RESULTS: Fig.2 shows results from the synthetic experiments for
Comerkora spproac the whole regime of SNR. The proposed method outperforms the .
'|  conventional two-step approach in terms of bias and rMSE, which
evidences the inadequacy of registration prior to T, estimation. In
Fig.3, results with real data are presented. T; maps in the region
denoted in Fig.3(a) with the proposed method and the conventional
two-step approach are shown in Fig.3(b) and Fig.3(c), respectively.
Visual results corroborate the effect of inaccurate motion estimation -
. . R . (b) T1 map
0 © of the conventional approach in terms of removing important details — [WIRSSEc_GSG
S e L P (corpus callosum, see black arrow). method
Fig.2 CONCLUSIONS: Registration prior to T, fitting introduces bias in
the T, estimates due to motion estimation inaccuracy and interpolation effects. Our simultaneous group-wise registration and
T estimation method reduces this bias as well as the rMSE in the T estimates for a wide range of SNR. Real data support the
hypothesis that the inherent interpolation in prior registration has a negative effect on the final T, maps, producing blurring
and thereby removing clinical important details, which are preserved by our proposed method.
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