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Target audience: MR physicists 

Purpose: To analyze and correct the influence of contrast-agent induced T2
* relaxation effects on the accuracy of fast dynamic 3D T1 measurements 

with a combined variable-flip-angle (VFA)/single-flip-angle (1FA) method. 

Theory: Fast dynamic 3D T1 mapping (e.g. to quantify the passage of contrast agent through tissue) can be performed by combining an initial longer 
(pre-contrast) baseline measurement with several different flip angles and a subsequent single-flip-angle (flip angle: αdyn) measurement during the 
dynamic phase.1,2 The VFA baseline measurement is used to determine S0E2,0 = S0 exp(–TE/T2,0

*) and E1,0  = exp(–TR/T1,0); e. g., by fitting the meas-
ured signals to the spoiled-gradient echo (FLASH) signal equation. Dynamic E1,dyn = exp(–TR/T1,dyn) and, thus, T1,dyn can be determined as 2 
       E1,dyn = [S0E2,dyn sin(αdyn) – Sdyn] / [S0 E2,dyn sin(αdyn) – Sdyn cos(αdyn)],  (1) 
if T2

* effects are neglected (i. e., assuming E2,dyn ≈ 1, which is justified for sufficiently short echo times TE and not too high T2
*-shortening concentra-

tions of the contrast agent). However, this approximation is no longer valid at high concentrations of contrast media, and a more accurate approach 
for T1 quantitation is required: The influence of the contrast-agent concentration c on R1=1/T1 and R2

*=1/T2
* is R1 = R1,0 + c·r1 and R2

* = R2,0
* + c·r2

*. 
Thus, c = (R1 – R1,0)/r1 and (the following is the principal idea of the proposed approach) R2

* can be expressed as a function of R1:  
R2

* = R2,0
* + (R1 – R1,0) · r2

*/r1 = R2,0
* – λ R1,0 + λ R1 with λ = r2

*/r1. Consequently, S0E2,dyn = S0E2,0 ·  E1,0
[– λ· (TE/TR)] ·  E1,dyn

[λ· (TE/TR)], i.e., S0E2,dyn can be 
expressed using known quantities from the baseline measurements (S0E2,0 and E1,0), the sequence parameters (TE/TR), and the contrast-agent-specific 
property λ = r2

*/r1. Combining this expression for S0E2,dyn with Eq.(1), we obtain the expression 

E1,dyn = 
S0E2,0 · E1,0

[– λ·(TE/TR)] ·  E1,dyn
[ λ· (TE/TR)] ·  sin(αdyn)  –  Sdyn 

(2) 
S0E2,0 · E1,0

[– λ·(TE/TR)] ·  E1,dyn
[ λ· (TE/TR)] ·  sin(αdyn)  –  Sdyn cos(αdyn) 

for the unknown E1,dyn, which must be solved numerically because of the rational exponent λ· (TE/TR). 

Methods: Simulations: Measurements (TE = 2 ms, TR = 5 ms) with typical relaxation times 
(T1 = 1000 ms, T2

* = 50 ms) and contrast agent concentrations between 0 and 10 mmol/L (r1 =  
5.2 s–1/(mmol/L), r2 = 6.1 s–1/(mmol/L) as for gadobutrol3) were simulated for 10 initial flip angles 
α = 3°, 6°, 9°, …, 30° and for 3 different “dynamic” flip angles αdyn = 18°, 24°, 30°. R1,dyn was deter-
mined (a) neglecting T2

* effects, (b) with the proposed exact T2
* correction, and (c) with an approxi-

mate correction assuming λ·(TE/TR) ≈ 0.5. Phantom measurements: T1 mapping with the proposed 
method (with and without correction) was performed in a liquid phantom with stepwise increasing 
concentrations of gadobutrol (3D FLASH sequence, TR: 7 ms, TE: 3 ms, matrix: 128×128×48, 
12 VFA flip angles between 2.5° and 30°; the 1FA flip angle was set to 20°). 

Results: Simulations (Fig. 1): Without T2
* correction (dashed lines), the calculated values of R1 

were systematically too low (i. e., T1 too long) with a mean relative deviation of R1 (over all contrast-
agent concentrations) of –20.0 % for αdyn = 18°, –14.7 % for αdyn =24°, and –11.8 % for αdyn =30°; 
the relative deviations became greater than 5 % for R1 > 11/s (c > 2 mmol/L) for αdyn = 18°. With the 
exact T2

* correction, all mean deviations were below 1 ppm. With the approximate correction (i. e., 
setting λ·(TE/TR) = 0.5), the mean errors were +4.7 % for αdyn = 18°, +2.0 % for αdyn = 24°, and 
+1.2 % for αdyn = 30°, i. e. still up to an order of magnitude smaller than without correction. 
Phantom measurements (Fig. 2): The maximum R1 deviations (for the 2 highest concentrations of 
gadobutrol) between 1FA measurement and VFA reference were –5.0% and –6.4% without correc-
tion and –2.7% and –1.6% with the proposed correction. 

Discussion: According to our results, T2
* effects become relevant for 1FA T1 mapping at tissue 

concentrations of contrast agent of about 2 mmol/L (i. e., R1 – R1,0 of 10/s); this threshold, however, 
depends strongly on the chosen sequence parameters, and particularly on TE and the flip angle. The 
approximate correction with λ·(TE/TR) = 0.5 may be sufficient for many practical purposes and has 
the additional advantage that it results in a cubic equation for (E1,dyn)

1/2, which can be solved in prin-
ciple analytically using Cardano’s method. 

Conclusion: Our results indicate that a correction of T2
* effects substantially reduces the systematic 

errors of 1FA T1 measurements at high concentrations of contrast agents (e. g. during the first pass of 
a contrast agent bolus). 
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Fig. 1: Simulation results: R1 (top) and ∆R1 (bottom) 
as a function of the contrast agent concentration. 
“Exact correction” results lie exactly on the reference. 

Measurement number 
Fig. 2: Phantom measurements of R1 at seven increas-
ing concentrations of the contrast agent. 
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