

Fast dynamic measurements of T_1 relaxation times: influence and correction of T_2^* effects

Olaf Dietrich¹, Maximilian Freiermuth¹, Linus Willerding², Michael Peller¹, and Maximilian F Reiser¹

¹Josef Lissner Laboratory for Biomedical Imaging, Institute for Clinical Radiology, LMU Ludwig Maximilian University of Munich, Munich, Germany, ²Department of Internal Medicine III, LMU Ludwig Maximilian University of Munich, Munich, Germany

Target audience: MR physicists

Purpose: To analyze and correct the influence of contrast-agent induced T_2^* relaxation effects on the accuracy of fast dynamic 3D T_1 measurements with a combined variable-flip-angle (VFA)/single-flip-angle (1FA) method.

Theory: Fast dynamic 3D T_1 mapping (e.g. to quantify the passage of contrast agent through tissue) can be performed by combining an initial longer (pre-contrast) baseline measurement with several different flip angles and a subsequent single-flip-angle (flip angle: α_{dyn}) measurement during the dynamic phase.^{1,2} The VFA baseline measurement is used to determine $S_0 E_{2,0} = S_0 \exp(-TE/T_{2,0}^*)$ and $E_{1,0} = \exp(-TR/T_{1,0})$; e. g., by fitting the measured signals to the spoiled-gradient echo (FLASH) signal equation. Dynamic $E_{1,dyn} = \exp(-TR/T_{1,dyn})$ and, thus, $T_{1,dyn}$ can be determined as²

$$E_{1,dyn} = [S_0 E_{2,dyn} \sin(\alpha_{dyn}) - S_{dyn}] / [S_0 E_{2,dyn} \sin(\alpha_{dyn}) - S_{dyn} \cos(\alpha_{dyn})], \quad (1)$$

if T_2^* effects are neglected (i. e., assuming $E_{2,dyn} \approx 1$, which is justified for sufficiently short echo times TE and not too high T_2^* -shortening concentrations of the contrast agent). However, this approximation is no longer valid at high concentrations of contrast media, and a more accurate approach for T_1 quantitation is required: The influence of the contrast-agent concentration c on $R_1 = 1/T_1$ and $R_2^* = 1/T_2^*$ is $R_1 = R_{1,0} + c \cdot r_1$ and $R_2^* = R_{2,0}^* + c \cdot r_2^*$. Thus, $c = (R_1 - R_{1,0})/r_1$ and (the following is the principal idea of the proposed approach) R_2^* can be expressed as a function of R_1 : $R_2^* = R_{2,0}^* + (R_1 - R_{1,0}) \cdot r_2^*/r_1 = R_{2,0}^* - \lambda R_{1,0} + \lambda R_1$ with $\lambda = r_2^*/r_1$. Consequently, $S_0 E_{2,dyn} = S_0 E_{2,0} \cdot E_{1,0}^{[-\lambda \cdot (TE/TR)]} \cdot E_{1,dyn}^{[\lambda \cdot (TE/TR)]}$, i.e., $S_0 E_{2,dyn}$ can be expressed using known quantities from the baseline measurements ($S_0 E_{2,0}$ and $E_{1,0}$), the sequence parameters (TE/TR), and the contrast-agent-specific property $\lambda = r_2^*/r_1$. Combining this expression for $S_0 E_{2,dyn}$ with Eq.(1), we obtain the expression

$$E_{1,dyn} = \frac{S_0 E_{2,0} \cdot E_{1,0}^{[-\lambda \cdot (TE/TR)]} \cdot E_{1,dyn}^{[\lambda \cdot (TE/TR)]} \cdot \sin(\alpha_{dyn}) - S_{dyn}}{S_0 E_{2,0} \cdot E_{1,0}^{[-\lambda \cdot (TE/TR)]} \cdot E_{1,dyn}^{[\lambda \cdot (TE/TR)]} \cdot \sin(\alpha_{dyn}) - S_{dyn} \cos(\alpha_{dyn})} \quad (2)$$

for the unknown $E_{1,dyn}$, which must be solved numerically because of the rational exponent $\lambda \cdot (TE/TR)$.

Methods: Simulations: Measurements (TE = 2 ms, TR = 5 ms) with typical relaxation times ($T_1 = 1000$ ms, $T_2^* = 50$ ms) and contrast agent concentrations between 0 and 10 mmol/L ($r_1 = 5.2 \text{ s}^{-1}/(\text{mmol/L})$, $r_2 = 6.1 \text{ s}^{-1}/(\text{mmol/L})$ as for gadobutrol³) were simulated for 10 initial flip angles $\alpha = 3^\circ, 6^\circ, 9^\circ, \dots, 30^\circ$ and for 3 different “dynamic” flip angles $\alpha_{dyn} = 18^\circ, 24^\circ, 30^\circ$. $R_{1,dyn}$ was determined (a) neglecting T_2^* effects, (b) with the proposed exact T_2^* correction, and (c) with an approximate correction assuming $\lambda \cdot (TE/TR) \approx 0.5$. **Phantom measurements:** T_1 mapping with the proposed method (with and without correction) was performed in a liquid phantom with stepwise increasing concentrations of gadobutrol (3D FLASH sequence, TR: 7 ms, TE: 3 ms, matrix: 128×128×48, 12 VFA flip angles between 2.5° and 30°; the 1FA flip angle was set to 20°).

Results: Simulations (Fig. 1): Without T_2^* correction (dashed lines), the calculated values of R_1 were systematically too low (i. e., T_1 too long) with a mean relative deviation of R_1 (over all contrast-agent concentrations) of -20.0% for $\alpha_{dyn} = 18^\circ$, -14.7% for $\alpha_{dyn} = 24^\circ$, and -11.8% for $\alpha_{dyn} = 30^\circ$; the relative deviations became greater than 5% for $R_1 > 11/\text{s}$ ($c > 2 \text{ mmol/L}$) for $\alpha_{dyn} = 18^\circ$. With the exact T_2^* correction, all mean deviations were below 1 ppm. With the approximate correction (i. e., setting $\lambda \cdot (TE/TR) = 0.5$), the mean errors were $+4.7\%$ for $\alpha_{dyn} = 18^\circ$, $+2.0\%$ for $\alpha_{dyn} = 24^\circ$, and $+1.2\%$ for $\alpha_{dyn} = 30^\circ$, i. e. still up to an order of magnitude smaller than without correction.

Phantom measurements (Fig. 2): The maximum R_1 deviations (for the 2 highest concentrations of gadobutrol) between 1FA measurement and VFA reference were -5.0% and -6.4% without correction and -2.7% and -1.6% with the proposed correction.

Discussion: According to our results, T_2^* effects become relevant for 1FA T_1 mapping at tissue concentrations of contrast agent of about 2 mmol/L (i. e., $R_1 - R_{1,0}$ of 10/s); this threshold, however, depends strongly on the chosen sequence parameters, and particularly on TE and the flip angle. The approximate correction with $\lambda \cdot (TE/TR) = 0.5$ may be sufficient for many practical purposes and has the additional advantage that it results in a cubic equation for $(E_{1,dyn})^{1/2}$, which can be solved in principle analytically using Cardano’s method.

Conclusion: Our results indicate that a correction of T_2^* effects substantially reduces the systematic errors of 1FA T_1 measurements at high concentrations of contrast agents (e. g. during the first pass of a contrast agent bolus).

References: 1. Brookes JA et al. Br J Radiol. 1996;69:206, 2. Dietrich O et al. Magn Reson Med. 2014 (epub, DOI: 10.1002/mrm.25199), 3. Rohrer M et al. Invest Radiol 2005;40:715

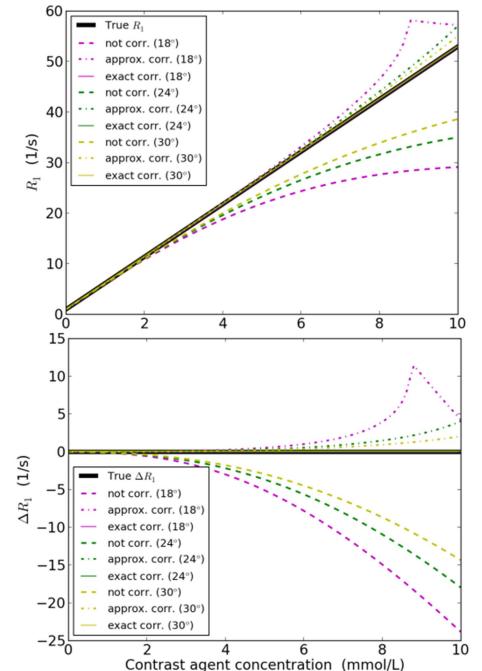


Fig. 1: Simulation results: R_1 (top) and ΔR_1 (bottom) as a function of the contrast agent concentration. “Exact correction” results lie exactly on the reference.

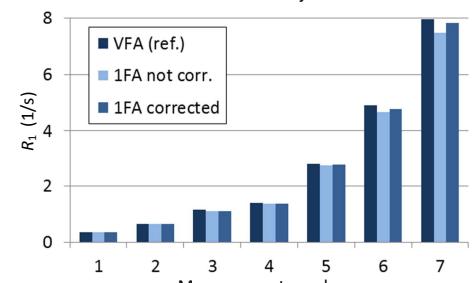


Fig. 2: Phantom measurements of R_1 at seven increasing concentrations of the contrast agent.