

Sparse Radial k - t SPIRiT for Dynamic Liver Imaging

Dan Zhu¹, Feng Huang², Jia Ning¹, Feiyu Chen¹, and Huijun Chen¹

¹Tsinghua University, Beijing, Beijing, China, ²Philips Healthcare, Suzhou, Jiangsu, China

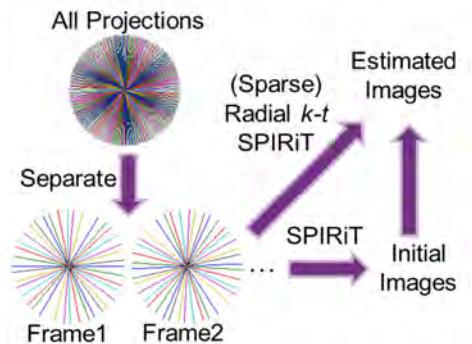
Target Audience: To those who are interested in accelerated hepatic imaging

Purpose: Clinical applications of dynamic contrast enhanced (DCE) liver imaging are limited due to the low temporal and spatial resolution. Golden angle radial trajectory[1] is a promising technique to achieve high spatiotemporal resolution. The reconstruction of under-sampled golden angle radial trajectory is a key to obtain clinically acceptable images. Recently, radial k - t SPIRiT [2] has been demonstrated to have improved reconstruction accuracy in phase contrast MRI with golden angle radial trajectory. In this work, we incorporate sparsity constraint into radial k - t SPIRiT (sparse radial k - t SPIRiT) for the reconstruction of dynamic liver images with golden angle radial trajectory, which greatly reduces artifact and noise level.

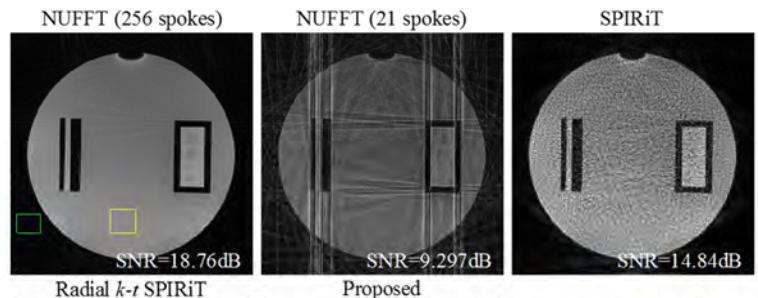
Theory: In [2], radial k - t SPIRiT takes advantage of the spatial and temporal correlation of k - t space to interpolate the missing data. For dynamic liver imaging, due to its data redundancy along temporal dimension, we can incorporate transform sparsity along temporal dimension into radial k - t SPIRiT to reduce artifacts and noise, which enables higher acceleration factor. The objective function for sparse radial k - t SPIRiT reconstruction is formulated as follows:

$$\text{argmin}_f (\| \mathcal{F}f - y \|_2^2 + \lambda \| (G - I)f \|_2^2 + \mu \| \Psi f \|_1),$$

where f is the estimated k - t space, y is measured data, G is spatiotemporal interpolation kernel, I is identity matrix, Ψ is a sparsity transform, λ and μ are weighting parameters. In this work, total variation along temporal dimension was used due to the similarity between adjacent frames.


Methods: Both phantom and *in-vivo* liver images were acquired with T1-weighted Fast Filed Echo (T1w-FFE) sequence using golden angle stack-of-star trajectory on a 3T system (Philips, Best, the Netherlands). For phantom, 200 spokes (TR=9.2ms, TE=4.2ms, FA=10°) was acquired continuously in 60 seconds with an eight channel head coil (Invivo Corp, Gainesville). For *in-vivo* case, 256 spokes (TR=3.14ms, TE=1.4ms, FA=5°) was acquired continuously in 59 seconds with a 32 channel cardiac coil (Invivo Corp, Gainesville).

For image reconstruction, the whole dataset was separated to frames of 21 spokes without overlapping. Then, they were reconstructed by sparse radial k - t SPIRiT and radial k - t SPIRiT (for comparison). To reduce the iteration needed in reconstruction, images reconstructed from SPIRiT are used as initial image. The reconstruction scheme is indicated in Fig. 1. Finally, signal-to-noise ratio was computed by: $\text{SNR} = \text{mean}(I_{\text{roi}})/\text{std}(I_{\text{roi}})$, where I_{roi} the region of interest (ROI) of liver and I_{roi} is in a part of background.


Results: Fig.2 shows the results of phantom experiment. Compared to SPIRiT and radial k - t SPIRiT, greatly reduced noise level was observed when sparsity constraint is incorporated. *In-vivo* liver results are shown in Fig. 3. Striking artifacts caused by under-sampling were significantly reduced in the image reconstructed by the proposed method. Compared to SPIRiT and Radial k - t SPIRiT techniques, reconstructed image for our method has a lower noise and artifact level.

Discussion and Conclusion: In this work, the feasibility of sparse radial k - t SPIRiT reconstruction method has been proved for golden angle stack-of-star trajectory for dynamic imaging. By phantom and *in-vivo* experiments, improved image quality were achieved compared with traditional SPIRiT and radial k - t SPIRiT.

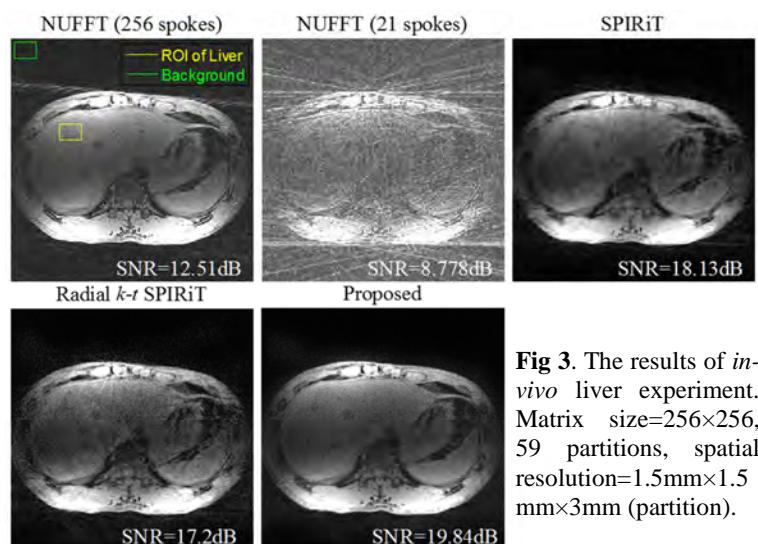

Reference: [1] S. Winkelmann, et al. IEEE TMI, 2007; 26(1):68-76, [2] C. Santelli, et al. MRM, 2014; 72(5):1233-1245

Fig 1. Steps for reconstruction

Fig 2. The results of phantom experiment. Matrix size=200×200, 20 partitions, spatial resolution=1mm×1mm ×4mm (partition).

Fig 3. The results of *in-vivo* liver experiment. Matrix size=256×256, 59 partitions, spatial resolution=1.5mm×1.5mm×3mm (partition).