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Purpose: Current tractography pipelines incorporate several modelling assumptions about the nature
of the underlying diffusion-weighted signal. In this work a purely data-driven and thus
fundamentally new approach is presented that tracks fiber pathways by directly processing raw
signal intensities. This approach has several advantages:
1. No assumptions about the diffusion propagator are made (e.g. Gaussianity).
2. The subtleties of the signal are not blurred by an abstracting modeling approach.
3. Artifacts are directly learned from data. Simplified noise models that are inadequate for modern
coil configurations and acquisition methods become obsolete (e.g. Ricianity).
4. Fiber termination criteria are learned from data. Thresholds, such as on the FA, are obsolete.
Methods: The presented method is based on a random forest classification- and voting-process that
guides each step of the streamline progression. Training: The classifier was trained on the output of a
previously performed standard CSD streamline tractography [1]. Classifier input: To become
independent of the gradient scheme, the signal is resampled to 100 directions equally distributed over
the hemisphere using spherical harmonics. These samples are directly used as input features for the
classifier. Additionally, the normalized previous streamline direction is used as classification feature.
Classifier output: The classifier produces a fiber termination probability Py, and a probability
P(v;) for 100 different possible directions v; (1 < i < 100). Classifier voting: At each step of the
streamline progression the signal is sampled at N random positions p/ (1 < j < N) within a distance
r of the current streamline position p. Classification is performed at each p/ to infer the local
proposal v/, The subsequent streamline direction v is determined by voting of the proposals:
v=3%; vJ. Two cases are distinguished in the determination of the proposal v/. Case 1 (termination

unlikely): 1f Pséop _ _
probabilities P/ (v;) of each possible direction: v/ = Y; w;v;, with w; = PJ(v;) - (v;, V14). The dot
product (v;, V,;4) is a directional prior that enforces straight fibers. Additionally, a hard curvature
J

i

< 0.5, v/ is determined based on the previous streamline direction v,,4 and the

threshold for the individual sampling directions v; is employed that, when exceeded, sets w; = 0.

Case 2 (consider termination): If PSJ;OP > 0.5, a potential tract boundary is identified and termination

is considered. Now, p/ is related to the direction v,y in order to decide whether termination is
preferable or should be avoided. A termination is considered much more likely if non-fiber regions
lie straight ahead (i.e. in the current direction of streamline progression v,;4). If the streamline
progresses realtively parallel to the detected fiber bundle margin, a premature termination is rather
avoided. This behavior is achieved by assessing the additional point
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Fig. 1: Illustration of the voting process leading to a
streamline reflection (a) and a termination after the
next one or two steps (b).
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Fig. 2: Voxel-wise number of fiber end points on
the phantom dataset. Left: deterministic CSD.
Right: proposed approach.

Fig. 3: Tracts obtained by proposed approach. Left:
Corpus callosum. Right: Corticospinal tract.

Fig. 4: In vivo voxel-wise number of fiber end
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(cf. Fig. 1). A streamline terminates if all sampling positions voted for termination. DT TEND 34% 8% 3% 21% 10°
Experiments: The classifier was tr.ained With 30 trees and a maximum tree depth of PROB 57%  23% WB0% 27% g0
50. The approach was evaluated in comparison to 12 state of the art tractography DT Global 2%  10% 2% 42% 120
methods using a simulated replication of the FiberCup phantom [2] and an in vivo = CSA DET 24%  67% 9% 70% 8°
dataset (81 gradient directions, b-value 3000 mm/s®, 2.5 mm isotropic voxels). CSA PROB 91% 5% 4% 83% 18°
Seeding was performed homogeneously within the brain mask (no white matter ~CSA  Global 81%  14% 5% 74% 13°
mask). Algorithms were run with their default parametrization. The presented method ~ DT-2 DET 60%  37% 3% 58% 6:
uses N = 50 sampling points, a step size of 0.5 f (f is the minimal voxel size), CSD DET 21% " SIS - 86% 40

= 0.25- f and a hard curvature threshold of 45° by default. Four metrics from the csb PROB B 28% 1% 93% 4
r ’ \ . y ) CSD Global 81% 17% 2% 72% 12°
Tractometer evaluation protocol [3] and an additional measure for the local angular _ Proposed | 3%  93% 4% 94% 40

error were analyzed. The in vivo tractograms were qualitatively evaluated on basis of
reconstructions of the corticospinal tract (CST) and the corpus callosum (CC) as well
as by an analysis of the spatial distribution of fiber end points.

Tab. 1: Quantitative results on the software phantom. The cells are
colored relative to the best (green) and worst (red) result per metric.

Results and discussion: Quantitatively, the presented approach performed best in four out of the five metrics (Tab. 1). Only 3% of the tracts
terminated prematurely (cf. Tab. 1 and Fig. 2). Furthermore, the proposed approach yielded the highest percentage of valid connections (93%), the
highest bundle coverage (94%) and one of the lowest local angular errors (4%). All 7 valid bundles in the phantom could be reconstructed
successfully. Also, the percentage of invalid connections is with 4% close to the top score of 1% yielded by the deterministic CSD streamline
tractography. In vivo, the approach successfully reconstructed crossing fiber regions such as the crossing between the CC, the CST and the superior
longitudinal fasciculus (cf. Fig. 3). Our method was furthermore able to reconstruct parts of fiber bundles that other approaches often missed (cf.
lateral projections of the CST in Fig. 3). In comparison to previous approaches like deterministic CSD tractography, most of the fibers reconstructed

by the presented approach correctly terminated in the cortex (cf. Fig. 4).

Conclusion: The presented machine learning based approach to fiber tractography is the first of its kind and quantitative as well as qualitative
phantom and in vivo experiments show promising performance compared to 12 established state of the art tractography pipelines.
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