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Purpose: Current tractography pipelines incorporate several modelling assumptions about the nature 
of the underlying diffusion-weighted signal. In this work a purely data-driven and thus 
fundamentally new approach is presented that tracks fiber pathways by directly processing raw 
signal intensities. This approach has several advantages: 
1. No assumptions about the diffusion propagator are made (e.g. Gaussianity). 
2. The subtleties of the signal are not blurred by an abstracting modeling approach. 
3. Artifacts are directly learned from data. Simplified noise models that are inadequate for modern 

coil configurations and acquisition methods become obsolete (e.g. Ricianity).  
4. Fiber termination criteria are learned from data. Thresholds, such as on the FA, are obsolete. 
Methods: The presented method is based on a random forest classification- and voting-process that 
guides each step of the streamline progression. Training: The classifier was trained on the output of a 
previously performed standard CSD streamline tractography [1]. Classifier input: To become 
independent of the gradient scheme, the signal is resampled to 100 directions equally distributed over 
the hemisphere using spherical harmonics. These samples are directly used as input features for the 
classifier. Additionally, the normalized previous streamline direction is used as classification feature. 
Classifier output: The classifier produces a fiber termination probability ௦ܲ௧௢௣ and a probability ܲሺ࢜௜ሻ for 100 different possible directions ࢜௜ ሺ1 ൑ ݅ ൑ 100ሻ. Classifier voting: At each step of the 
streamline progression the signal is sampled at ܰ random positions ݌௝ ሺ1 ൑ ݆ ൑ ܰሻ within a distance ݎ of the current streamline position ݌. Classification is performed at each ݌௝ to infer the local 
proposal ࢜௝. The subsequent streamline direction ࢜ is determined by voting of the proposals: ࢜ ൌ ∑ ࢜௝௝ . Two cases are distinguished in the determination of the proposal ࢜௝. Case 1 (termination 

unlikely): If ௌܲ௧௢௣௝ ൑ 0.5, ࢜௝ is determined based on the previous streamline direction ࢜௢௟ௗ and the 

probabilities ܲ௝ሺ࢜௜ሻ of each possible direction: ࢜௝ ൌ ∑ ௜࢜௜௜ݓ , with ݓ௜ ൌ ܲ௝ሺ࢜௜ሻ ⋅ 〈࢜௜, ࢜௢௟ௗ〉. The dot 
product 〈࢜௜, ࢜௢௟ௗ〉 is a directional prior that enforces straight fibers. Additionally, a hard curvature 

threshold for the individual sampling directions ࢜௜௝ is employed that, when exceeded, sets ݓ௜ ൌ 0. 

Case 2 (consider termination): If ௌܲ௧௢௣௝ ൐ 0.5, a potential tract boundary is identified and termination 

is considered. Now, ݌௝ is related to the direction ࢜௢௟ௗ in order to decide whether termination is 
preferable or should be avoided. A termination is considered much more likely if non-fiber regions 
lie straight ahead (i.e. in the current direction of streamline progression ࢜௢௟ௗ). If the streamline 
progresses realtively parallel to the detected fiber bundle margin, a premature termination is rather 
avoided. This behavior is achieved by assessing the additional point 

௝̂݌  ൌ ቊ ݌ െ ࢊ if	〈࢜௢௟ௗ, 〈ഥࢊ ൑ ݌0 ൅ ൫ࢊഥ െ 2 ⋅ 〈࢜௢௟ௗ, 〈ഥࢊ ⋅ ࢜௢௟ௗ൯‖ࢊ‖ if	〈࢜௢௟ௗ, 〈ഥࢊ ൐ 0 with ࢊ ൌ ௝݌ െ ഥࢊ and ݌ ൌ ௝ is ൐̂݌ If ௦ܲ௧௢௣ at position .‖ࢊ‖ࢊ 0.5, ࢜௝ is set to ሺ0,0,0ሻ (vote for termination), 

otherwise ࢜௝ is set to ࢜௝ ൌ ௝̂݌ െ  to guide the streamline along the non-fiber region ݌
(cf. Fig. 1). A streamline terminates if all sampling positions voted for termination. 
Experiments: The classifier was trained with 30 trees and a maximum tree depth of 
50. The approach was evaluated in comparison to 12 state of the art tractography 
methods using a simulated replication of the FiberCup phantom [2] and an in vivo 
dataset (81 gradient directions, b-value 3000 mm/s2, 2.5 mm isotropic voxels). 
Seeding was performed homogeneously within the brain mask (no white matter 
mask). Algorithms were run with their default parametrization. The presented method 
uses ܰ ൌ 50 sampling points, a step size of 0.5 ⋅ ݂ (݂ is the minimal voxel size), r ൌ 0.25 ⋅ ݂ and a hard curvature threshold of 45° by default. Four metrics from the 
Tractometer evaluation protocol [3] and an additional measure for the local angular 
error were analyzed. The in vivo tractograms were qualitatively evaluated on basis of 
reconstructions of the corticospinal tract (CST) and the corpus callosum (CC) as well 
as by an analysis of the spatial distribution of fiber end points. 
Results and discussion: Quantitatively, the presented approach performed best in four out of the five metrics (Tab. 1). Only 3% of the tracts 
terminated prematurely (cf. Tab. 1 and Fig. 2). Furthermore, the proposed approach yielded the highest percentage of valid connections (93%), the 
highest bundle coverage (94%) and one of the lowest local angular errors (4%). All 7 valid bundles in the phantom could be reconstructed 
successfully. Also, the percentage of invalid connections is with 4% close to the top score of 1% yielded by the deterministic CSD streamline 
tractography. In vivo, the approach successfully reconstructed crossing fiber regions such as the crossing between the CC, the CST and the superior 
longitudinal fasciculus (cf. Fig. 3). Our method was furthermore able to reconstruct parts of fiber bundles that other approaches often missed (cf. 
lateral projections of the CST in Fig. 3). In comparison to previous approaches like deterministic CSD tractography, most of the fibers reconstructed 
by the presented approach correctly terminated in the cortex (cf. Fig. 4). 
Conclusion: The presented machine learning based approach to fiber tractography is the first of its kind and quantitative as well as qualitative 
phantom and in vivo experiments show promising performance compared to 12 established state of the art tractography pipelines.  
References: [1] Tournier et al. INT J IMAG SYST TECH 2012 [2] Neher et al. Magn Reson Med. 2014 [3] Côté et al. Med Image Anal. 2013 

Model Type 
No Valid Invalid Bundle Angular 

Connection Coverage Error 
DT DET 60% 25% 15% 21% 5° 
DT FACT 62% 23% 14% 24% 6° 
DT TEND 84% 8% 8% 21% 10° 
DT PROB 57% 23% 20% 27% 8° 
DT Global 82% 10% 8% 42% 12° 

CSA DET 24% 67% 9% 70% 8° 
CSA PROB 91% 5% 4% 83% 18° 
CSA Global 81% 14% 5% 74% 13° 
DT-2 DET 60% 37% 3% 58% 6° 
CSD DET 21% 78% 1% 86% 4° 
CSD PROB 66% 28% 7% 93% 4° 
CSD Global 81% 17% 2% 72% 12° 

- Proposed 3% 93% 4% 94% 4° 

 
Fig. 1: Illustration of the voting process leading to a
streamline reflection (a) and a termination after the 
next one or two steps (b). 

 
Fig. 2: Voxel-wise number of fiber end points on 
the phantom dataset. Left: deterministic CSD. 
Right: proposed approach. 

 
Fig. 3: Tracts obtained by proposed approach. Left:
Corpus callosum. Right: Corticospinal tract. 

 
Fig. 4: In vivo voxel-wise number of fiber end
points. Left: deterministic CSD. Right: proposed
approach. 

Tab. 1: Quantitative results on the software phantom. The cells are 
colored relative to the best (green) and worst (red) result per metric.
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