

Comparison of T2* correction methods for vertebral bone marrow fat quantification using chemical shift encoding-based water-fat imaging

Dimitrios C Karmpinos¹, Stefan Ruschke¹, Michael Dieckmeyer¹, Holger Eggers², Hendrik Kooijman³, Ernst J Rummeny¹, Jan S Bauer⁴, and Thomas Baum¹

¹Diagnostic and Interventional Radiology, Technische Universität München, Munich, Germany, ²Philips Research Laboratory, Hamburg, Germany, ³Philips Healthcare, Hamburg, Germany, ⁴Neuroradiology, Technische Universität München, Munich, Germany

Target audience: Scientists and clinicians interested in water-fat imaging and bone marrow fat quantification

Purpose: Chemical shift encoding-based water-fat imaging methods have been emerging for vertebral bone marrow fat quantification, as they can overcome the spatial resolution limitations of the single-voxel MRS and provide high-resolution fat fraction (FF) mapping across multiple vertebral bodies with growing applications in osteoporosis [1] and radiation therapy [2]. Vertebral bone marrow is embedded within the cavities of the trabecular bone matrix and it is therefore characterized by short T2* relaxation times. Previous work in iron-loaded liver fat quantification has highlighted the importance of the correction of T2* decay effects in water-fat imaging. Specifically, different signal models have been proposed correcting for common T2* [3,4], dual T2*[5] or common T2' [6] decay effects for the water and fat components. Previous work in bone marrow, sampling gradient-echo signal around a spin-echo, has suggested a common T2' for all spectral components, but focused in regions containing primarily fat [7]. Therefore, the purpose of the present study was to compare different approaches for T2* correction in chemical shift encoding-based water-fat imaging of vertebral bone marrow using single-voxel MRS as a reference standard.

Methods: **Simulations:** Synthetic data was generated for an eight-echo experiment with TE_{min}/ΔTE = 1.47/1.05 ms. A water-fat signal model was used considering the presence of multiple fat peaks [8] and T2* decay effects assuming a common T2' = 10 ms for the water and fat compartments, different T2 relaxation times (T2w varying between 15 ms and 35 ms and T2f = 75 ms) and a nominal fat fraction in the range between 0% and 100%. Fat quantification was then performed using a single T2* correction model.

In vivo measurements: The lumbar spine of 26 young, healthy subjects was scanned on a 3 T whole-body scanner (Ingenia, Philips Healthcare, Best, Netherlands) using the built-in-the-table posterior coil elements (12-channel array). The L3, L4 and L5 vertebral bodies were first scanned using a STEAM single-voxel MRS sequence (TR = 6000 ms, TM = 16 ms, VOI = 15x15x15 mm³, 8 averages per TE) at four different echo times (TE = 11/15/20/25 ms). An eight-echo 3D spoiled gradient-echo sequence was then used for chemical shift encoding-based water-fat separation. The sequence acquired the eight echoes in two interleaves (4 echoes per TR) using flyback (monopolar) read-out gradients and the following imaging parameters: TR/TE_{min}/ΔTE = 15/1.47/1.05 ms, FOV = 220x220x80 mm³, acquisition matrix = 124x122x4, receiver bandwidth = 1551 Hz/pixel, frequency direction = A/P (to minimize breathing artifacts), N_{avg} = 2. A flip angle of 3° was used to minimize T1-bias effects.

Fat quantification: MRS peak fitting was performed by constraining the areas of olefinic and glycerol fat peaks to the main fat methyl and methylene peaks [8]. Water and fat peak areas were corrected for T2 effects assuming a common T2f for all fat peaks. Therefore, MRS quantification derived FF, T2w and T2f. The gradient-echo imaging data was processed off-line using a region-growing algorithm to first initially estimate the fieldmap variation. A complex-based water-fat decomposition was then performed using the pre-calibrated fat spectrum previously measured in the red bone marrow of the proximal femur [8]. The gradient-echo signal values were averaged over the ROIs of the MRS and different approaches were evaluated for correction of T2* effects: (a) single T2* correction (assuming common T2* for water and fat) [3,4], (b) dual T2* correction (assuming different T2* for water and fat) [5], (c) T2' correction using the a priori known T2 from the MRS at each vertebral body (3 values per subject), (d) T2' correction using the a priori known T2 from the MRS at the L4 vertebral body (single value per subject). Fat fraction maps were also generated using T2* correction approaches (a), (b) and (d).

Results: When a single T2* correction approach is used on synthetic data generated assuming a common T2' for water and fat but different T2, the FF bias is maximized at nominal FF values close to 50% and for maximal difference between the water and fat T2 relaxation times (Fig. 1). Fig. 2 shows typical FF maps in two subjects using different T2* correction approaches. The dual T2* correction approach leads to noisy fat fraction maps, especially in the female subject with lower vertebral FF values (Fig. 2). Fig. 3 shows the linear regression analysis of the imaging FF results using the different T2* correction approaches with the results from the single-voxel MRS. The linear regression intercept is significantly different from 0 (p < 0.05) for all T2* correction methods. The linear regression slope is significantly different from 1 (p < 0.05) for the single T2* (Fig. 3a) and dual T2* (Fig. 3b) correction methods, but non-significantly different from 1 for the T2' correction methods using either the a priori known T2 from the MRS at each vertebral body (p = 0.39, Fig. 3c) or the a priori known T2 from the MRS at L4 (p = 0.45, Fig. 3d).

Discussion & Conclusion: The reported results show that T2* correction effects are important in vertebral bone marrow fat quantification. Bone marrow contains water and fat components with a similar T2' but different T2. Therefore, a single T2* correction introduces a bias in the FF, especially for moderate nominal FF values close to 50% (Fig. 3a). A dual T2* correction can correct for this FF bias at nominal FF close to 50%, but shows poor noise performance at low FF (Fig. 3b) [9]. A T2' correction using a priori known T2 relaxation times can remove the FF bias with good noise performance (Fig. 2). T2' of fat shows in general little variation across subjects, but T2' of water shows much larger variations and it has to be measured. The present results show that using the T2' from an MRS measurement at a single vertebral body location is adequate for T2* correction of the imaging data in the lumbar spine (Fig. 3d). A small bias of the order of 3% remains between imaging FF and MRS FF, which could be related to the presence of short T2* water components in the MRS [8]. In conclusion, a T2' correction using a priori known T2 can remove T2* bias without degrading noise performance in FF mapping of the spine.

References: [1] Kuhn, Eur Radiol 23:3432 2013, [2] Bolan, J Magn Reson Imaging 38:1578 2013, [3] Yu, J Magn Reson Imaging 26:1153 2007, [4] Bydder, Magn Reson Imaging 26:347 2008, [5] Chebrolu, Magn Reson Med 63:849 2010, [6] Mansson, Magn Reson Imaging 30:1461 2011, [7] Wehrli, J Magn Reson 131:61 1998, [8] Karmpinos, Magn Reson Med 71:1158 2014, [9] Reeder, Magn Reson Med, 67:389 2012.

Acknowledgement: The present work was supported by Philips Healthcare.

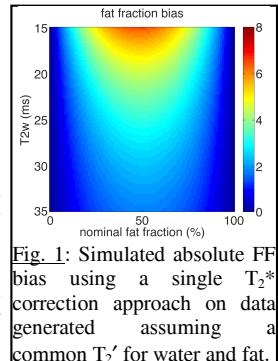


Fig. 1: Simulated absolute FF bias using a single T2* correction approach on data generated assuming a common T2' for water and fat.

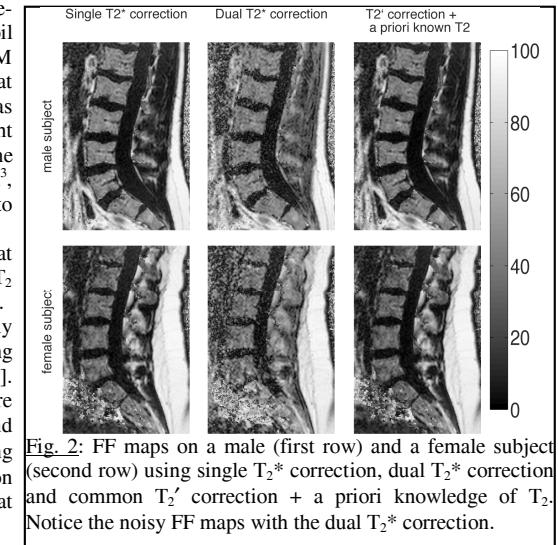


Fig. 2: FF maps on a male (first row) and a female subject (second row) using single T2* correction, dual T2* correction and common T2' correction + a priori knowledge of T2. Notice the noisy FF maps with the dual T2* correction.

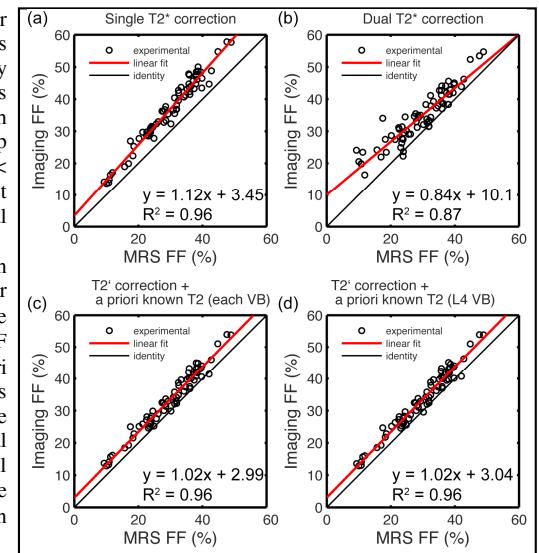


Fig. 3: Comparison of imaging FF using different T2* correction approaches with the MRS FF. The best agreement between imaging and MRS is shown for the T2' correction methods using a priori known T2.