

Simultaneous frequency and T2 mapping, applied to thermometry and to susceptibility-weighted imaging

Cheng-Chieh Cheng¹, Chang-Sheng Mei², Pelin Aksit Ciris^{3,4}, Robert V. Mulkern^{4,5}, Mukund Balasubramanian^{4,5}, Hsiao-Wen Chung¹, Tzu-Cheng Chao⁶, Lawrence P. Panych^{3,4}, and Bruno Madore^{3,4}

¹Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan, ²Department of Physics, Soochow University, Taipei, Taiwan, ³Department of Radiology, Brigham and Women's Hospital, Boston, MA, United States, ⁴Harvard Medical School, Boston, MA, United States, ⁵Department of Radiology, Boston Children's Hospital, Boston, MA, United States, ⁶Department of Computer Science and Information Engineering, National Cheng-Kung University, Tainan, Taiwan

Target audience: Researchers or clinicians involved in situations that may benefit from both T₂ and field mapping, such as thermometry or susceptibility imaging.

Purpose: Quantitative T₂ maps and field maps can provide rich clinically-relevant information. In brain exams, T₂ mapping is key to tumor detection while field mapping enables susceptibility imaging, to detect iron accumulation, which might be indicative of conditions such as bleeding, Parkinson's disease, Alzheimer's disease, or multiple sclerosis. In thermometry, field mapping enables temperature measurements through the proton resonance frequency shifting effect while T₂ mapping may provide a complementary means of detecting heat-induced damage. Different pulse sequences are typically required to obtain T₂ and field information: a spin-echo (SE) based sequence for T₂ and a gradient-echo (GRE) based sequence for field mapping. The need for two different sequences tends to prevent T₂ and field information from being acquired together. Although, methods based on asymmetrical spin-echoes have been proposed to capture both types of information, such sequences tend to be relatively slow¹. Here, we describe application of a steady-state multi-pathway GRE sequence and associated reconstruction algorithm to capture both T₂ and field maps with relatively-fast scan time, and present results in both susceptibility+T₂ and thermometry+T₂ applications.

Methods: FID and spin-echo signals undergo different transverse relaxation processes. R₂ and R_{2'} in Eq.1 and Eq.2 represent irreversible and reversible decay rates, respectively, where T₂ = 1/R₂ and T_{2'} = 1/(R₂+R_{2'}). MR signals may change with either (R₂+R_{2'}) or (R₂-R_{2'}) depending on whether the reversible decay is evolving (e.g., an FID signal) or devolving (e.g., SE signal on its way to formation). The present work involves a 'dual echo in the steady state' (DESS) sequence, which samples both an FID signal (S_j⁺) and a SE-like signal (S_j⁻) at several different echo times TE_j⁺ and TE_j⁻, respectively. The following expressions are fitted to obtain 4 unknowns (S₀⁺, S₀⁻, R₂ and R_{2'}): $S_j^+ = S_0^+ e^{-(R_2 + R_2') \cdot TE_j^+}$, $S_j^- = S_0^- e^{-(R_2 - R_2') \cdot TE_j^-}$ [Eq. 1]. T₂ and T_{2'} can then be determined from R₂ and R_{2'}. Field maps are obtained by fitting to the linear phase evolution with TE_j⁺ and TE_j⁻, and these maps are then converted into either susceptibility or temperature maps.

The assumption of an exponential T_{2'} decay is based on Lorentzian intra-voxel frequency distributions, a condition that is frequently not met². Deviations from a Lorentzian distribution are not considered in the model above, which in turn causes errors in measured T₂ values. The model below, extends the model above, by incorporating the possibility that intra-voxel frequency distributions may be better characterized with Gaussian functions, as recently found in the brain², and was employed for the brain data presented here: $S_j^+ = S_0^+ e^{-(R_2 + R_2) \cdot TE_j^+ - \sigma TE_j^{+2}}$, $S_j^- = S_0^- e^{-(R_2 - R_2) \cdot TE_j^- + \sigma TE_j^{-2}}$ [Eq. 2]. These equations are fitted to obtain S₀⁺, S₀⁻, R₂, R_{2'}, and σ. Locations with σ≈0 represent tissues where the simpler Eq. 1 was sufficient to model the decay, and σ≠0 to tissues where the extended model of Eq. 2 proved useful.

Results: The method was validated against regular SE and GRE scans using a 5-tube phantom with varying amounts of manganese sulfate (3T, FA=25°, TR=25ms, TE⁺/TE⁻ = 5.5, 9.8, 14.0, 18.3 / 6.8, 11.0, 15.2, 18.3 ms, 399Hz/px, FOV=18×18cm, 64×128pixels). Correct values for T₂ and T_{2'} were obtained (Fig. 1).

For thermometry, bovine tissue was heated using ultrasound. Fig. 2a shows temperature and Fig. 2b shows T₂ overlaid on structural images (3T, FA=35°, TR=20.6ms, TE⁺/TE⁻ = 3.4, 7.6, 11.8, 15.9 / 4.7, 8.8, 13.0, 17.2 ms, 399Hz/px, FOV=20×20cm, 128×128pixels). A red outline shows the extent of heat-induced damage as measured with a temperature dose threshold of 240CEM₄₃ (Fig. 2a) or of 15% T₂ change (Fig. 2b). Time-averaged T₂ away from focus was measured at 43.6 ms, as expected for muscle tissue at 3T.

For brain imaging, the internal field perturbation and a T₂ map (obtained using Eq. 2) are shown in Fig. 3a and 3b, respectively (3T, 3D sequence, FA=25°, TR=50ms, TE⁺/TE⁻ = 4.0, 11.9, 19.8, 27.7, 35.6, 43.6 / 6.4, 14.4, 22.3, 30.2, 38.1, 46.0 ms, 200Hz/px, FOV=19.2×19.2×7.2cm, 128×128×36pixels). A map of σ and the change in T₂ values between Eq. 1 and Eq. 2 (as a percentage) are shown in Fig. 3c and 3d, respectively. In Fig. 3c higher σ values tend to indicate higher field inhomogeneities and T₂ errors in Fig. 3d.

Discussion and Conclusion: Simultaneous T₂ and field mapping can be achieved using the proposed method, and a more elaborate fitting procedure that does not assume a Lorentzian intra-voxel frequency distribution may prove especially useful in non-homogeneous field regions.

References: [1] Ma J, Wehrli. JMR B 1996;111:61-9. [2] Mulkern et al. MRM 2014, doi: 10.1002/mrm.25365.

Support from NIH grants R01CA149342, P41EB015898 and R01EB010195 is acknowledged.

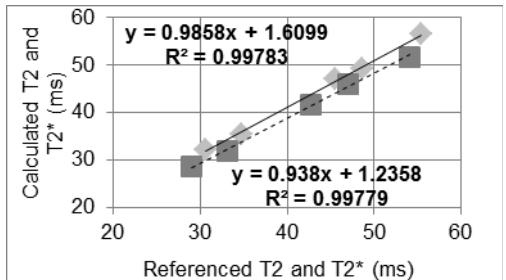


Fig. 1: T₂ (diamonds) and T_{2'} (squares) values were validated against reference values from SE and GRE scans.

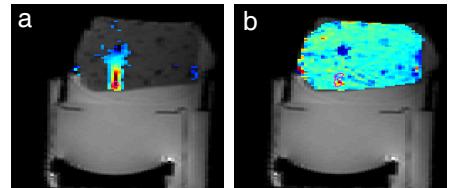


Fig. 2. Ultrasound heating of ex-vivo tissues, (a) shown with temperature overlay and (b) with T₂ overlay.

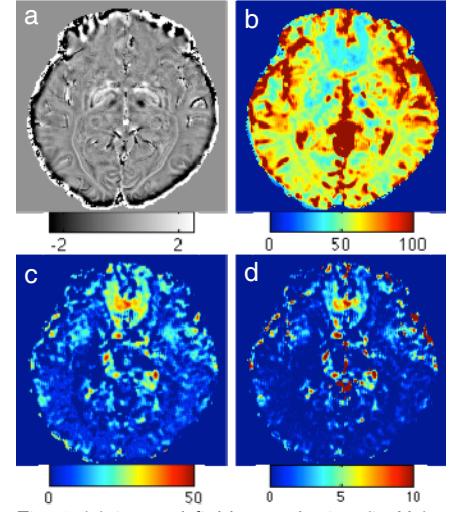


Fig. 3 (a) internal field perturbation (in Hz), (b) fitted T₂ map (in ms) with extra consideration of σ, (c) σ map, and (d) T₂ difference (in %).