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Target audience: Researchers and clinicians interested in cerebral perfusion
imaging and arterial spin labeling.

Purpose: Arterial spin labeling (ASL) yields maps of cerebral blood flow (CBF),
which are useful in the management of stroke, tumors and other disorders.
Dynamic ASL using multiple observation times (OTs) reveals rich dynamic
perfusion information, such as arterial transit time (ATT). However, the
inherently low SNR makes dynamic ASL time-consuming and parameter maps
less reliable. In this work we use sparse image reconstruction methods, not
primarily to fill in missing k-space, but to improve parameter map accuracy.

Our drategy is as follows: (1) 3D TSE stack-of-spirals readouts’ for
efficiency; (2) dual-density spirals for autocalibration and motion robustness; (3)
SPIRIT ° and spatial total variation constraints for single-shot 3D imaging; and
(4) sparse model-based reconstruction * to enforce prior information about the
temporal evolution of the dynamic ASL signal at multiple OTs, acquired by
varying both tagging duration and post label delay (PLD).

The first goa of this work was to validate that model-based reconstruction
improves image quality and parameter map accuracy. The second goal was to
demonstrate fast and robust dynamic ASL acquired in 20 seconds per frame.
Methods: A model-based dynamic ASL reconstruction can be described by the
following objective function:

£ = argmin:||Fx — y|I* + 4,1(G — Dx|, + [TV ()|, + A3IM(x)],
Thefirst part of the equation enforces data fidelity. x isthe target image, y is the
sampled data, and F is the Fourier transform, including the spiral trajectory and

an undersampling mask. The latter part of the equation enforces prior knowledge:

G is the SPIRIT kernel, TV is spatia tota variation, and M is the perfusion
model based on aK-SVD dictionary of possible perfusion signals.

All experiments were performed on Siemens Magnetom Trio 3T scanner using
an in-house sequence. The validation of model-based reconstruction was
performed on six volunteers. The ASL blood bolus was tagged by balanced
PCASL. k-space was sampled by a 3D stack-of-spirals trgjectory with single-
shot dual density readouts. 24 dlices covered the whole brain. In-plane
resolution=4.5mmx4.5mm, dice thickness=4.5mm, TR=5s. ASL images were
averaged 12 times at each perfusion phase and were acquired at 9 successive
OTs. The scan time was 18 minutes.

Fast dynamic ASL imaging was performed on volunteers with similar
parameters, adding background suppression for additional artifact suppression.
Data was acquired at 9 successive OTs, with 12 averages acquired at each OT.
Total scan time was 3-9 minutes, depending upon number of averages included.

Images were reconstructed in MATLAB, with conventional non-Cartesian
gridding reconstruction, SPIRIT paralel reconstruction and model-based
reconstruction. CBF and ATT maps were quantified by least squares model
fitting (M-CBF and M-ATT) and weighted averaging (W-CBF and W-ATT) °.
Results and Discussion: Fig. 1 shows statistical analysis of the six volunteers’
images. With model-based reconstruction, SNR of ASL images was significantly
improved (Fig. 1a) and mode fitting residual of CBF estimation was
significantly reduced (Fig. 1b). Using the high-SNR CBF map from al available
data (12 averages) as a gold standard, the CBF maps from only 1/3 of data (4
averages) were evaluated by similarity index (Fig. 1c). The proposed method
resulted in significantly higher similarity to the high-SNR results. Fig. 2 shows
results from a fast dynamic ASL volunteer scan. Compared to gridding
reconstruction, the proposed method reduced the background noise and model
regression residua in the 60 s per OT scan. It largely maintained the image
quality and accuracy of the CBF map when the scan time was reduced to 40 s per
OT. Further acceleration to 20 s per OT resulted in somewhat more error in the
CBF calculation. Nonetheless, the proposed method yielded high quality
dynamic 3D ASL images and parameter maps from 9 perfusion phases in 3
minutes.

Fig. 1. ASL image SNR, CBF estimation residual and structural similarity index
in six volunteers. Model-based reconstruction improved SNR (&) and reduced
estimation residuals (b) sgnificantly, compared to gridding and parallel
reconstruction. Using 1/3 of the signal averages, model-based reconstruction
provided better structural similarity to high-SNR images that used all of the
averages (c). ROIs of grey matter (GM) and white matter (WM) were chosen
based on T1 values. Wilcoxon signed-rank test was performed using these ROIs.
* = P<0.05 versus parallel reconstruction. $ = P<0.05 versus gridding.

Fig. 2. Fast dynamic ASL with model-based reconstruction, single-shot 3D
spiral scanning and background suppression. With a scan time of 60 s per
phase (6 averages), the model-based reconstruction reduced the background
noise and model residual (mean residua = 4.6e-6), compared with
conventional gridding recongtruction (mean residual = 7.1e-6). With 4
averages, the proposed method maintained the image quality with a scan time
of 40 s per phase (mean residua = 5.7e-6) and provided good image quality
with 20 s per phase (2 averages, mean residual = 9.5e-6). Units: Dynamic
mode fittina residual (a.u.). CBF maps (ml/100a/min). ATT maps (seconds).

Conclusion: We demonstrated that model-based image reconstruction improves dynamic ASL image quality and parameter map accuracy. The method yields dynamic
whole-brain ASL in 20s per perfusion phase, with high image quality and accurate parameter maps.
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