

## Combined PET-MRI: is it possible to quantify FDG perfusion based on Gd-DTPA pharmacokinetics?

Marie Anne Richard<sup>1</sup>, Vincent Turgeon<sup>1</sup>, Jérémie P. Fouquet<sup>1</sup>, Luc Tremblay<sup>1</sup>, Réjean Lebel<sup>1</sup>, and Martin Lepage<sup>1</sup>  
<sup>1</sup>Centre d'imagerie moléculaire de Sherbrooke (CIMS), Université de Sherbrooke, Sherbrooke, Québec, Canada

**Target audience** Scientists and physicians interested in combined PET-MRI and pharmacokinetic modelling.

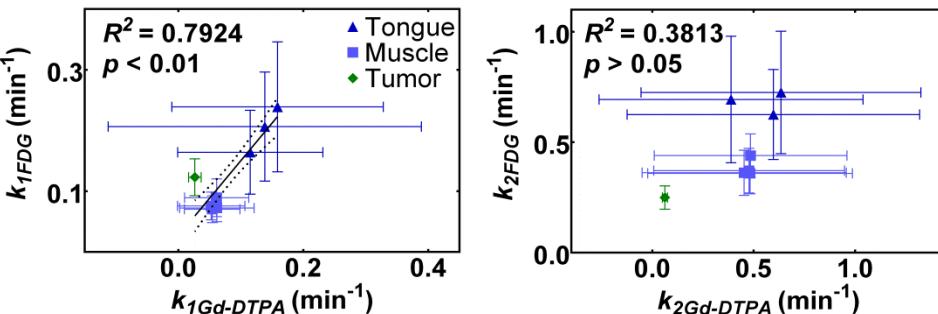
**Purpose** To verify if the perfusion kinetics of FDG can be determined based on Gd-DTPA DCE-MRI in order to decouple the effects of perfusion and metabolism in PET imaging.

### MRI

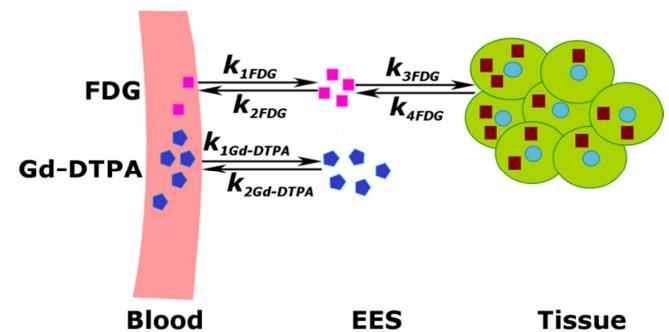
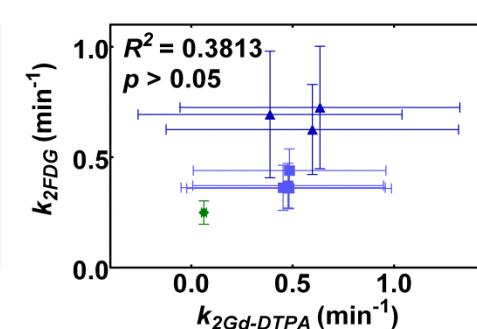
- **T<sub>1</sub> map:** Using multiple flip angles and a gradient echo sequence (TR=100 ms, TE=2.49 ms)
- **DCE:** Using a keyhole sequence. Bolus injection of 142.9 mM Gd-DTPA (Magnevist®, Bayer) in 400  $\mu$ L.

### PET

- 30 minutes after the end of the MRI scan. Bolus injection of 142.9 mM Gd-DTPA and ~30 MBq of FDG in 400  $\mu$ L. Blood sampling through the caudal artery at several predefined time points.


### Blood analysis

- Measuring the concentration of FDG and Gd-DTPA in blood samples by gamma counter and mass spectrometry, respectively.



### Data processing

**Figure 2.** Outline of the PET-MRI imaging protocol.

of correlation for  $k_1$  in brain regions is to be expected because Gd-DTPA does not cross the intact blood-brain barrier and FDG is subject to facilitated diffusion by the GLUT1 transporter. No significant correlation was found for  $k_2$  whether the brain regions were included or not, which is consistent with elimination from tissues by different mechanisms.



**Figure 3.** There is a significant linear correlation between  $k_{1Gd-DTPA}$  and  $k_{IFDG}$  for muscles, the tumor and the tongue. For regions of the brain, excluding the tumor, this relation does not hold due to the blood-brain barrier.



**Figure 1.** Compartment model showing perfusion ( $k_1$  and  $k_2$ ) and metabolism ( $k_3$  and  $k_4$ ). EES: extracellular-extravascular space.

**Protocol** Eight Fischer rats with F98 glioma were scanned according to a previously published protocol [4] (Fig. 2). Dynamic MRI images were acquired on a 7 T small animal system (Varian) with a 4 s temporal resolution. PET images were acquired on a LabPET4 scanner (Gamma Medica/GE Healthcare) and reconstructed with variable temporal resolution. Manual co-registration of MRI and PET images and pharmacokinetic analysis were performed using an in-house MATLAB program. Statistical analysis was performed in GraphPad Prism.

**Results and discussion** There is a significant linear correlation between  $k_{1FDG}$  and  $k_{1Gd-DTPA}$  for different face muscles, the tongue and the tumor (Fig. 3). Note that no significant correlation was found for  $k_1$  when various brain regions were included in the analysis (data not shown). The absence

**Conclusion** Gd-DTPA and FDG appear to have similar perfusion kinetics, but their elimination from tissue is unrelated. These results suggest that it would be possible to determine the  $k_1$  parameter of FDG from the Gd-DTPA MRI data and use this information to distinguish between metabolism and perfusion.

**References** [1] Phelps *et al.* Ann. Neurol. 1979; 6:371-388. [2] Tofts *et al.* JMRI. 1999; 10:223-232. [3] Pandit, *Introduction to the Pharmaceutical Science*, (Baltimore: LLW, 2007), 126. [4] Poulin *et al.* Magn Reson Med. 2013; 69(3):781-792.