

Response of Quantitative MRI to Artificial Collagen Cross-linking of Articular Cartilage

Jari Rautiainen^{1,2}, Mikko J. Nissi^{1,2}, Elli-Noora Salo³, Harri Kokkonen^{2,4}, Shalom Michaeli⁵, Silvi Mangia⁵, Olli Gröhn⁶, Juha Töyräs^{2,4}, and Miika T. Nieminen^{1,3}
¹Medical Research Center Oulu and Department of Diagnostic Radiology, University of Oulu, Oulu, Finland, ²Department of Applied Physics, University of Eastern Finland, Kuopio, Finland, ³Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland, ⁴Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland, ⁵Center for Magnetic Resonance Research, University of Minnesota, MN, United States, ⁶Department of Neurobiology, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland

TARGET AUDIENCE: Researchers aiming to apply quantitative MRI techniques in osteoarthritis research.

PURPOSE: Aging of cartilage results in accumulation of advanced glycation end products (AGEs) in cartilage, some most important of which are collagen crosslinks. Increased cross-linking of the collagens makes the cartilage matrix more stiff and brittle [1]. The aims of the study were to evaluate the sensitivity of various quantitative MRI parameters (T1, dGEMRIC, T2, continuous wave (CW) T1p, adiabatic T1p, adiabatic T2p and magnetization transfer (MT)) to artificial collagen cross-linking induced by L-threose (threose) in bovine articular cartilage [2].

METHODS: Osteochondral samples ($n = 7 + 7$) of 6 mm were prepared from bovine patellae obtained from local slaughterhouse. The specimens were incubated for 6 days 18 h, half of the specimens were treated with threose (Sigma Aldrich Co., St. Louis, MO, USA) while the other half served as controls. After the treatment the specimens were frozen at -20°C until the experiment. Contrast enhanced computed tomography studies on the adjacent tissue of the specimens have been reported earlier [2]. MRI was performed at 9.4 T (Oxford Instruments Plc, Witney, UK) using a 19-mm quadrature RF volume transceiver (RAPID Biomedical GmbH, Rimpar, Germany) and Varian DirectDrive console (Varian Inc. Palo Alto, CA, USA). Prior to imaging, the specimens were thawed, placed inside a Teflon test tube and immersed in perfluoropolyether with the cartilage surfaces perpendicular to B_0 . Quantitative MRI measurements were carried out by utilizing a magnetization preparation (MP) block or spin-echo preparation placed prior to the FSE readout, or by using saturation recovery technique. Measured parameters included adiabatic T1p (HS1 pulses, pulse duration 4.5 ms, $\gamma B_{1\max} = 2.5$ kHz), adiabatic T2p (HS1 pulses, pulse duration 4.5 ms, $\gamma B_{1\max} = 2.5$ kHz), CW-T1p with spin-lock powers $\gamma B_1 = 125$ and 1000 Hz, and T1 during saturation (T1sat) at +10 kHz off-resonance (MT experiment), T1 and T2 relaxation times and dGEMRIC measurement after 24 h Gd-DTPA²⁻ immersion.

For determination of biomechanical properties of the cartilage, equilibrium modulus (E_{eq}) was measured using a step-wise stress-relaxation test (3x5% step, 100%/s strain rate). The fixed charge density (FCD) content of cartilage and collagen fibril anisotropy (parallelism index, PI) and orientation were quantified with digital densitometry and polarized light microscopy from Safranin-O and unstained sections, respectively. Furthermore, the water content of the cartilage was determined from the samples as the ratio of dry and wet weights. The different cross-links in cartilage (hydroxyl pyridinoline (HP), lysyl pyridinoline (LP) and pentosidine (Pent)) were quantified using high performance liquid chromatography and the collagen and proteoglycan (PG) contents were measured with FTIR.

Full-thickness cartilage ROIs from the relaxation time maps were analyzed for mean and standard deviation (SD) values of threose-treated and non-treated groups. Statistical differences of the MRI parameters between the groups were investigated with Wilcoxon signed rank test.

RESULTS: Cross-linking (Pent and LP), stiffness (E_{eq}) and FCD (optical density) were significantly ($p < 0.05$) increased (18.2 mmol/mol, 77 mmol/mol, 1.02 MPa and 1.75, respectively) in the threose treated cartilage samples compared to the non-treated samples (<0.004 mmol/mol, <0.032 mmol/mol, 0.35 MPa and 1.39) [2]. However, PG, collagen and water contents of cartilage as well as the orientation and anisotropy of the collagen fibrils remained unchanged. The dGEMRIC technique showed significantly longer relaxation times in the threose treated samples in comparison with non-treated cartilage while native T1 relaxation time was significantly decreased (Table 1). T2 and T1sat exhibited no statistically significant differences. Of the rotating frame MRI parameters, adiabatic T1p and CW-T1p (at spin lock frequency of 1 kHz) were significantly increased with the threose treatment while adiabatic T2p showed no statistically significant differences. CW-T1p demonstrated dispersion and at 125 Hz spin-lock power the relaxation times were close to T2 values and the statistical difference between the groups vanished (Figure 1, Table 1).

DISCUSSION: Similarly to the previous contrast agent enhanced CT study [2], threose treated specimens demonstrated decreased penetration of the negatively charged contrast agent due to increase of the FCD, as a result of cross-linking of cartilage. That resulted in elevated relaxation time values with the dGEMRIC technique, even though the PG content remained unchanged. Furthermore, a trend towards shorter T2 values was observed in threose-treated group. In a previous study [3], T2 was significantly decreased due to cross-linking, however the fixation was done in nasal cartilage with formalin, different from the present experiment. Increase of adiabatic T1p as well as the CW-T1p was an unexpected finding. This observation could be attributed to slower dynamics due to cross linking, which escaped detection at relatively high spin-locking fields, i.e., at 1 kHz of spin-lock power, or blocking of exchange-mediated relaxation. This relaxation phenomenon could be used for evaluation of natural aging of articular, and thus requires further research.

CONCLUSION: Threose-treatment detectably changed the biophysical properties of articular cartilage and provided an original means to the study of relaxation processes in cartilage. Quantitative MRI parameters were sensitive to threose-induced artificial cross-linking in cartilage, similar to natural aging. While dGEMRIC responded to the threose treatment as expected, the T1p parameters showed unexpected increase in the relaxation time constants which is possibly attributed to an increased cross-linked fraction characterized by the slow motion or blocking of exchange-mediated relaxation.

REFERENCES

1. Verzijl, N., et al., AGEing and osteoarthritis: a different perspective. *Curr Opin Rheumatol*, 2003. **15**(5): p. 616-22.
2. Kokkonen, H.T., et al., Computed tomography detects changes in contrast agent diffusion after collagen cross-linking typical to natural aging of articular cartilage. *Osteoarthritis Cartilage*, 2011. **19**(10): p. 1190-8.
3. Fishbein, K.W., et al. Effects of Formalin Fixation and Collagen Cross-Linking on T2 and Magnetization Transfer in Bovine Nasal Cartilage MRM, 2007. **57**: p. 1000-1011.

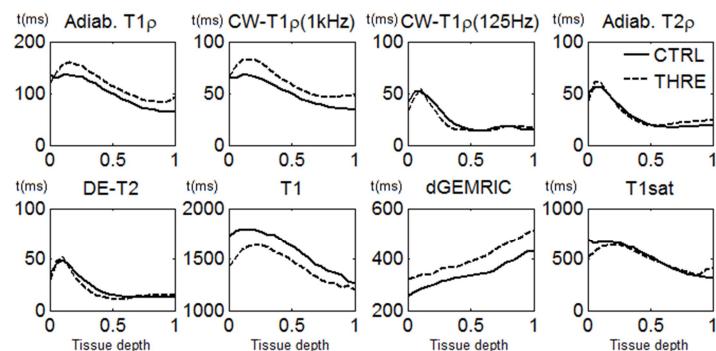


Figure 1. Depth-wise profiles of adiabatic T1p, CW-T1p at spin-lock powers of 1000 and 125 Hz, adiabatic T2p, adiabatic double echo T2, T1, dGEMRIC and T1sat relaxation time parameters in threose treated (THRE) and non-treated (CTRL) cartilage groups.

Table 1. Summary of the relaxation times (mean \pm SD (ms)) in full-thickness ROI of threose-treated and non-treated cartilage. * $p < 0.05$ Wilcoxon signed rank test

Parameter ($n = 7$)	t(ms)	t(ms)
	threose	non-treated
Adiabatic T1p	113.1 \pm 23.0*	97.8 \pm 20.9
Adiabatic T2p	31.8 \pm 8.5	27.7 \pm 3.7
CW-T1p, $\gamma B_1 = 1.0$ kHz	62.7 \pm 10.7*	48.9 \pm 11.7
CW-T1p, $\gamma B_1 = 125$ Hz	27.4 \pm 10.2	23.7 \pm 2.5
DE-T2	20.7 \pm 5.5	26.4 \pm 15.0
T1	1400.4 \pm 100.4*	1551.0 \pm 105.2
dGEMRIC	454.2 \pm 27.3*	357.5 \pm 23.2
T1sat	500.1 \pm 91.6	490.7 \pm 57.9