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INTRODUCTION 
Multiparameter mapping is a powerful tool for measuring multiple tissue properties (e.g., ߩ, ଵܶ, ଶܶ, ଶܶ∗) for quantitative tissue characterization [1]. However, 

multiparameter mapping suffers from the well-known curse of dimensionality (each new parameter being mapped adds another dimension to the image function, so the 
number of unknowns grows exponentially). As a result, practical applications of multiparameter mapping have been limited due to long data acquisition time. Low-rank 
matrix modeling and compressed sensing have proved useful for parametric mapping, but they have not explicitly and fully exploited the underlying low-rank tensor 
structure induced by the partial separability of the multivariate function to be imaged.  This paper presents a novel tensor-based data acquisition and reconstruction 
method for highly accelerated multiparameter mapping. We will demonstrate the proposed method in FLASH-based ߩ, ଵܶ, and ଶܶ∗ mapping of an ex vivo rat heart 
infiltrated by superparamagnetic iron oxide (SPIO)-labeled macrophages. 

METHODS 
We model the multivariate image function as partially separable in space, flip angle, and echo time [2]: ܚ)ߩ, ,ߙ (ܧܶ =෍෍෍ܿℓ௠௡ݑℓ(ܚ)ݒ௠(ߙ)ݓ௡(ܶܧ)ே
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This decomposition can be viewed as representing ߩ as a low-rank tensor, or more precisely, as a rank-(ܯ,ܮ,ܰ) tensor [3]. This model motivates a data acquisition 
strategy wherein we collect navigator data by densely sampling (ܓ, ,ߙ ,ܓ) space over very limited locations of-(ܧܶ ,ܓ) space and-(ߙ  space, and imaging data by-(ܧܶ
sparsely sampling the remainder of (ܓ, ,ߙ  .space-(ܧܶ

For the basic PS model, it is common to determine the subspace structure from the singular value decomposition (SVD) of a Casorati matrix containing navigator 
data. For this higher-order PS model, the navigator data from the densely sampled (ܓ, ,ܓ) space and-(ߙ  space locations enable the definition of two “Casorati-(ܧܶ
tensors”. We  collapse the Casorati tensors along different dimensions (either the ߙ or ܶܧ dimensions), forming two Casorati matrices: ۱ଵ, the jth column of which 

contains the samples  ݀ ቀ൛ܓ௣ൟ௣ୀଵ௉ , ,௝ߙ ൛ܶܧ௣ൟ௣ୀଵ௉ ቁ, where ൛൫࢑௣, ௣൯ൟ௣ୀଵ௉ܧܶ
 is the set of (ܓ,  space locations that contain data from all flip angles; and ۱ଶ, the ݆th-(ܧܶ

column of which contains the samples ݀ ቀ൛ܓ௤ൟ௤ୀଵொ , ൛ߙ௤ൟ௤ୀଵொ , ,௝ቁ, where ൛൫࢑௤ܧܶ ௤൯ൟ௤ୀଵொߙ
 is the set of (ܓ,  ܯ space locations that contain data from all echo times. The-(ߙ

most significant right singular vectors of  ۱ଵ yield basis functions ሼݒ௠(ߙ)ሽ	௠ୀଵெ ; the ܰ most significant right singular vectors of ۱ଶ yield basis functions ሼݓ௡(ܶܧ)ሽ	௡ୀଵே . 
It is simple to show that the decomposition in Eq. 1 can be expressed as: ܚ)ߩ, ,ߙ (ܧܶ = ∑ ,ߙ)ℓ߰(ܚ)ℓݑ ௅ℓୀଵ(ܧܶ , where ߰ℓ(ߙ, (ܧܶ = ∑ ∑ ܿℓ௠௡ݒ௠(ߙ)ݓ௡(ܶܧ)ே௡ୀଵெ௠ୀଵ . 

Without knowledge of the ܿ, we can  define ܮ෠ = ,ߙ)functions ෠߰ℓ ܰܯ (ܧܶ = ෠߰௠,௡(ߙ, (ܧܶ = ,݉ where ℓ indexes the Cartesian set of) (ܧܶ)௡ݓ(ߙ)௠ݒ ݊ pairings). Noting 

that ൛ ෠߰ℓ(ߙ, ௅෠	ൟℓୀଵ(ܧܶ 	defines a tensor-product subspace that contains the subspace spanned by ሼ߰ℓ(ߙ, ௅	ሽℓୀଵ(ܧܶ , we can  use ܚ)ߩ, ,ߙ (ܧܶ = ∑ (ܚ)ℓݑ ෠߰ℓ(ߙ, ௅෠ℓୀଵ(ܧܶ  for 

image reconstruction. More specifically, we solve the following optimization problem to recover ሼݑℓ(ܚ)ሽℓୀଵ௅෠  from the imaging data sparsely sampling (ܓ, ,ߙ   :space-(ܧܶ
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ଶ + ܴ൫ሼݑℓ(ܚ)ሽℓୀଵ௅෠ ൯, 
where ܌ is the vector of measured data, Ω is the sparse sampling operator, and ܴ is a regularization function, which can be chosen to be a weighted L2 penalty function  
or sparsity-promoting L1 penalty. 

RESULTS AND DISCUSSION 
We used 200 × 200 gold standard images defined for 10 

flip angles (2°, 5°, 10°, 15°, 20°, 25°, 30°, 35°, 40°, and 45°) and 
11 echo times (0.025, 0.050, 0.075, 0.1, 0.25, 0.50, 0.75, 1, 2.5, 
5, and 7.5 ms) using a FLASH sequence signal model. We 
compared two navigator sampling strategies: 1) dense sampling 
of (ܓ, ,ߙ space over an 8-(ܧܶ × 200 ܓ   -space region; and 2) 
dense sampling of (ܓ, ,ߙ space over a 23-(ܧܶ ×  space-ܓ  200
region for two flip angles (2°, 45°) and two echo times (0.025 
ms, 7.5 ms). The two strategies collect the same amount of 
navigator data. We randomly undersampled the remainder of  (ܓ, ,ߙ  space by a factor of 18.3 for a total undersampling-(ܧܶ
factor of 10.8. 

Figures 1 and 2 depict ܴଵ and ܴଶ∗ maps, respectively, from 
the gold standard and from the images accelerated using the 
proposed method. The regularization function ܴ  was chosen to 
impose anatomical edge constraints [4] generated from a 
composite image as in [5]. The ଵܶ- and ଶܶ∗-shortening effect of the SPIO-labeled macrophages can clearly be seen in all cases. The proposed method accurately 
preserves the underlying ଵܶ and ଶܶ∗ tissue properties, with the exception of ଶܶ∗ values below 2 ms that are already challenging to accurately quantify. There were no 
significant differences in image quality between navigation strategies, demonstrating the flexible navigator sampling requirements of the proposed method. 

CONCLUSION 
This paper presents a novel tensor-based data acquisition and image reconstruction method for highly accelerated multiparameter mapping. The method will 

significantly enhance the practical utility of multiparameter mapping. 
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Fig. 1:  ܴଵ maps from (a) the gold standard and 10.8x-accelerated images using (a) navigator 
strategy 1, and (b) navigator strategy 2. (d) and (e) are error maps for (b) and (c), respectively. 
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Fig. 2:  ܴଶ∗ maps from (a) the gold standard and 10.8x-accelerated images using (a) navigator 
strategy 1, and (b) navigator strategy 2. (d) and (e) are error maps for (b) and (c), respectively. 
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