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INTRODUCTION

Multiparameter mapping is a powerful tool for measuring multiple tissue properties (e.g., p, Ty, T,, T5) for quantitative tissue characterization [1]. However,
multiparameter mapping suffers from the well-known curse of dimensionality (each new parameter being mapped adds another dimension to the image function, so the
number of unknowns grows exponentially). As a result, practical applications of multiparameter mapping have been limited due to long data acquisition time. Low-rank
matrix modeling and compressed sensing have proved useful for parametric mapping, but they have not explicitly and fully exploited the underlying low-rank tensor
structure induced by the partial separability of the multivariate function to be imaged. This paper presents a novel tensor-based data acquisition and reconstruction
method for highly accelerated multiparameter mapping. We will demonstrate the proposed method in FLASH-based p, T;, and T, mapping of an ex vivo rat heart
infiltrated by superparamagnetic iron oxide (SPIO)-labeled macrophages.
METHODS

‘We model the multivariate image function as partially separable in space, flip angle, and echo time [2]:
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This decomposition can be viewed as representing p as a low-rank tensor, or more precisely, as a rank-(L, M, N) tensor [3]. This model motivates a data acquisition
strategy wherein we collect navigator data by densely sampling (K, @, TE)-space over very limited locations of (K, a)-space and (K, TE)-space, and imaging data by
sparsely sampling the remainder of (k, @, TE)-space.

For the basic PS model, it is common to determine the subspace structure from the singular value decomposition (SVD) of a Casorati matrix containing navigator
data. For this higher-order PS model, the navigator data from the densely sampled (K, a)-space and (K, TE)-space locations enable the definition of two “Casorati
tensors”. We collapse the Casorati tensors along different dimensions (either the a or TE dimensions), forming two Casorati matrices: C,, the jth column of which

contains the samples d ({kp};l'“i'{TEp}::l)’ where {(kp,TEp)}:=1 is the set of (K, TE)-space locations that contain data from all flip angles; and C,, the jth
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most significant right singular vectors of C; yield basis functions {v,, (@)} ¥_,; the N most significant right singular vectors of C, yield basis functions {w, (TE)}¥_;.
It is simple to show that the decomposition in Eq. 1 can be expressed as: p(r, @, TE) = Y5_; u,(r)y,(a, TE), where ,(a, TE) = ¥¥_ ¥N_| conVim (@)W, (TE).

column of which contains the samples d ({kq}zzf {aq} ) TE]) where {(kq, %)}2:1 is the set of (K, @)-space locations that contain data from all echo times. The M

Without knowledge of the ¢, we can define L = MN functions ¥, (, TE) = P, (@, TE) = v, (@)w,(TE) (where £ indexes the Cartesian set of m, n pairings). Noting
that {1/;{;(0(, TE)L,L:1 defines a tensor-product subspace that contains the subspace spanned by {i,(a, TE)}L,, we can use p(r,a, TE) = Y5_, u,(r)i,(a, TE) for

image reconstruction. More specifically, we solve the following optimization problem to recover {u, (r)}';;=1 from the imaging data sparsely sampling (K, &, TE)-space:
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where d is the vector of measured data, ( is the sparse sampling operator, and R is a regularization function, which can be chosen to be a weighted L2 penalty function
or sparsity-promoting L1 penalty.
RESULTS AND DISCUSSION

We used 200 x 200 gold standard images defined for 10
flip angles (2°, 5°, 10°, 15°, 20°, 25°, 30°, 35°, 40°, and 45°) and
11 echo times (0.025, 0.050, 0.075, 0.1, 0.25, 0.50, 0.75, 1, 2.5,
5, and 7.5 ms) using a FLASH sequence signal model. We
compared two navigator sampling strategies: 1) dense sampling
of (k,a, TE)-space over an 8 X 200 Kk-space region; and 2)
dense sampling of (K, a, TE)-space over a 23 X 200 K-space
region for two flip angles (2°, 45°) and two echo times (0.025
ms, 7.5 ms). The two strategies collect the same amount of
navigator data. We randomly undersampled the remainder of
(k, a, TE)-space by a factor of 18.3 for a total undersampling
factor of 10.8.

Fig. 1: R; maps from (a) the gold standard and 10.8x-accelerated images using (a) navigator
strategy 1, and (b) navigator strategy 2. (d) and (e) are error maps for (b) and (c), respectively.
Figures 1 and 2 depict R, and R; maps, respectively, from

the gold standard and from the images accelerated using the @ (b) © (d) (e)

proposed method. The regularization function R was chosen to Fig. 2: R; maps from'(a) the gold standard and 10.8x-accelerated images using (a) navigator
. . . strategy 1, and (b) navigator strategy 2. (d) and (e) are error maps for (b) and (c), respectively.
impose anatomical edge constraints [4] generated from a
composite image as in [5]. The T;- and T, -shortening effect of the SPIO-labeled macrophages can clearly be seen in all cases. The proposed method accurately
preserves the underlying T; and T, tissue properties, with the exception of T, values below 2 ms that are already challenging to accurately quantify. There were no
significant differences in image quality between navigation strategies, demonstrating the flexible navigator sampling requirements of the proposed method.
CONCLUSION

This paper presents a novel tensor-based data acquisition and image reconstruction method for highly accelerated multiparameter mapping. The method will
significantly enhance the practical utility of multiparameter mapping.
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