Synchronous Sodium (²³Na) and Proton (¹H) Radial Imaging of the Human Knee on a Clinical MRI Scanner

Joshua Kaggie¹, Bijaya Thapa¹, Nabraj Sapkota¹, Glen Morrell¹, Neal Bangerter², Kyle Jeong¹, Xianfeng Shi³, and Eun-Kee Jeong¹

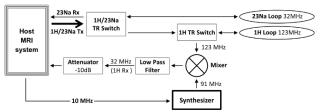
¹Utah Center for Advanced Imaging Research, Radiology, University of Utah, Salt Lake City, UT, United States, ²Electrical and Computer Engineering, Brigham Young University, Provo, UT, United States, ³The Brain Institute, Psychiatry, University of Utah, Salt Lake City, UT, United States

Target Audience: Researchers of Non-Proton MRI INTRODUCTION:

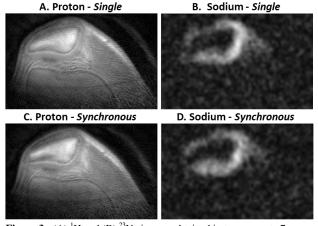
Sodium (²³Na) MRI is under investigation for improving the characterization and assessment of tumor viability^(1,2), cartilage health⁽³⁻⁶⁾, renal failure^(7,8), tissue damage following stroke⁽⁹⁾, and multiple sclerosis⁽¹⁰⁾. A significant barrier to ²³Na MRI is the additional time required to obtain ²³Na images⁽¹¹⁾. Schemes that acquire both ²³Na and ¹H images in a single pulse sequence (termed "**synchronous acquisition**" here) can provide additional ²³Na image data that complements ¹H image data, without a significant scan time penalty when compared to ¹H imaging alone.

Synchronous acquisition schemes have been investigated on clinical MRI systems (11-14). However, the increased complexities in both hardware and pulse sequence have limited their application on clinical scanners. Previous implementations on clinical scanners have used Cartesian acquisition schemes (12-14), resulting in long acquisition times and poor ²³Na SNR. This work presents ²³Na/H synchronous dual-nuclear MR imaging (**dnMRI**) with 3D ultra-short radial MRI for better ²³Na imaging results than have been previously obtained with Cartesian MRI (13.14).

METHODS:


Hardware: A custom-made ²³Na/¹H coil was used, consisting of a quadrature ²³Na coil (a central circular loop that was spatially decoupled with an overlapped butterfly loop) and ¹H linear coil (a butterfly loop spatially decoupled with the ²³Na loops) (**Fig.** 1). Transmit switching for both ¹H and ²³Na channels was accomplished using a ²³Na/¹H filter that separated the transmit RF to either a quadrature ²³Na or linear ¹H TR switch. Because the dual-resonant TR switch is still intended for use without losing current imaging functionality, an additional ¹H TR switch was placed between the ¹H output of the dual-resonant TR switch (Fig. 2) and coil. This second ¹H TR switch directs the ¹H NMR signal toward the receiver path, and (i) pre-amplifies, (ii) converts to 32.6 MHz using an RF mixer, and, (iii) filters the mixed signal using a low-pass filter to pass the 32.6 MHz signal only (Fig. 1). The resultant ¹H signal at the carrier frequency of 32.6 MHz is then (iv) attenuated and (v) fed into one of the ³²Na receive channels ⁽¹²⁾. Both signals are simultaneously sampled at the ²³Na resonance frequency subject to the same readout gradients, which results in a higher 1 H image spatial resolution by 3.8 times (= $\gamma_{1H}/\gamma_{23Na}$) than the 23 Na resolution. **Imaging Study:** Three scans were performed with 3D ultra-short radial sampling: a single-nuclear ¹H acquisition, a single-nuclear sodium acquisition, and a synchronous ²³Na/¹H dnMRI acquisition. Identical acquisition parameters for each nucleus were used for both single-nuclear and dnMRI. The scan parameters were (²³Na/¹H): 40/40 ms TRs, 70 μs/0.27 ms TEs, 70°/25° flip-angles, 400/105 mm FOVs, 3.1/0.8 mm isotropic resolutions, with 256 readout points, 10240 radial lines, 399 Hz/pixel receiver bandwidth, and 6 min 51 sec acquisition time. The study was performed with

During synchronous ²³Na/¹H dnMRI, the ²³Na and ¹H transmit occurred sequentially, enabled by the scanner's ability to switch between two frequencies within the same sequence. Sampling for both ²³Na and ¹H NMR signals at the carrier frequency of 32.6 MHz occurred simultaneously on two ²³Na channels. **RESULTS:**


Figure 3 shows the results of single and synchronous 23 Na/ 1 H acquisitions in the knee of a healthy volunteer. The synchronous 23 Na and 1 H dnMRI images within the same sequence (**Fig. 3**) have minor (\sim 6%) SNR losses for both 23 Na and 1 H images when compared to 23 Na and 1 H single-nuclear MRI. The minor loss in SNR is caused by slight gradient timing differences that result in slight changes between the single and synchronous image reconstructions. The 1 H data had a 3.8 times higher resolution and smaller FOV than the 23 Na data.

A. B. Sodium Proton

Figure 1: (A) Picture and (B) schematic of the ${}^{1}H/{}^{23}Na$ knee coil used in this study. The ${}^{23}Na$ portion consisted of a butterfly loop that was used in quadrature with a spatially decoupled central loop.

Figure 2: Transmit/receive hardware for both ¹H and ²³Na. Arrows indicate transmit/receive pathways during ²³Na/¹H dnMRI.

Figure 3: (A) ¹H and (B) ²³Na images obtained in two separate 7 minute single-nuclear MRI scans. (C) ¹H and (D) ²³Na images synchronously obtained in a single 7 minute dnMRI acquisition.

DISCUSSION AND CONCLUSION:

This work has demonstrated synchronous acquisition of both ²³Na and ¹H nuclei on a clinical scanner using a radial acquisition scheme. Synchronous imaging enabled acquisition of both ²³Na and ¹H images in what normally would require twice the scan time for the same sequential single-nuclear MRI acquisitions. Synchronous dnMRI ²³Na/¹H image acquisition is very attractive due to the significant decreases in imaging time when compared to sequential ²³Na and ¹H imaging. In addition, the ¹H data measured synchronously during the dual-nuclear acquisition may be used to improve the quality of the non-proton data, such as identifying and correcting motion-corrupted FID data and/or water-¹H navigated non-proton MR imaging/spectroscopy.

ACKNOWLEDGEMENTS: This work was partly supported by NSF CBET 1133908, VA Merit Review Grant, Margolis Foundation, VISN 19 MIRECC. REFERENCES:

- 1. Ouwerkerk R, et al. Radiology 2003;227(2):529.
- 4. Reddy R, et al. Magn Reson Med 1998;39(5):697.
- 7. Maril N, et al. Magn Reson Med 2006;56(6):1229. 2005;15(3):639, xi-xii.
- 12. Lee SW, et al. Magn Reson Imag. 1986;4(4):343-50
- 2. Ouwerkerk R, et al. Breast Cancer Res Treat 2007;106(2):151.
- 5. Borthakur A, et al. Radiology 2002;224(2):598.
- Rosen Y, Lenkinski RE. Acad Radiol 2009;16(7):886.
 Inglese M, et al. Brain 2010;133(Pt 3):847.
- 13. Stehning C, et al. 19th ISMRM. 2011:1501.
- 3. Borthakur A, et al. Osteoarthr Cartilage 2000;8(4):288.
- 6. Wheaton AJ, et al. Radiology 2004;231(3):900.
- 9. Thulborn KR, et al. Neuroimaging Clin N Am
- 11. Jeong EK, et al. 21st ISMRM, 2013;2781. 14. Kaggie JK, et al. 22nd ISMRM, 2014;3789.