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Purpose

Temperature measurements using the PRF shift method are susceptible to errors introduced from motion-induced BO variations. In temperature imaging
in the breast, this artifact is not due to the motion of the breast itself, but is due to the BO variations caused by susceptibility changes in the chest and
abdomen'. Respiratory motion outside of the imaging region leads to BO variations from excitation to excitation which produce frequency offsets. Each
offset results in an added linear phase and apparent position shift that changes between excitations, causing ghosting artifacts. If not corrected, these
variations cause artifacts in both the magnitude and phase images leading to errors in temperature measurements. For gradient recalled (GRE) images,
the phase offset evolves linearly with echo time (TE). This artifact becomes more apparent when collecting more than one phase encode line per
excitation, such as in a segmented echo-planar imaging (seg-EPI) sequence because of the longer TE, the phase change while reading multiple lines,
and the low sampling bandwidth in the phase encode direction®.

Methods

A 3D seg-EPI sequence was modified to include flyback readout and two FID (no gradient) within-sequence phase correction navigators, one before the
EPI readout and one after (Figure 1). With no gradients, these navigators provide an estimate of the average phase over the sensitive volume of each
channel in the receiver array. The phase difference between the two FID’s consists of a constant phase difference due to the offset of the image and a
variable phase due to the signal frequency variation due to respiration. After removing the average phase difference, the remaining phase variation is
primarily due to BO variation. Measurement error is reduced by taking the average phase difference of corresponding samples in each FID (Figures 2 &
3). The phase variation about the mean is then divided by the time difference between the navigators to give a slope of the phase offset (in radians/ms)
due to respiration for each excitation. The phase of the lines acquired each excitation is adjusted by the slope during that excitation multiplied by the
individual TE, incorporating echo-shifting. The slope of the phase change is calculated and used for correction for each coil separately. Experiments
were performed both in in vivo human breast and gelatin phantom. 3D in vivo human breast images were collected on a Siemens Trio 3T scanner to
assess the effectiveness of the correction method (2x2x3 mm, Coronal, Flip Angle = 20, TR/TE = 47/15 ms, EPI Factor = 7, 8 slices with 25%
oversampling, BW = 751 Hz/Px, 10 acquisitions). A focused ultrasound heating experiment was performed using a gelatin phantom with a male
volunteer above to create the respiration while imaging and heating with focused ultrasound (1x1x3 mm, Coronal, Flip Angle = 20, TR/TE = 32/15 ms,
EPI Factor = 7, 8 slices with 25% oversampling, Bandwidth = 744 Hz/Px, 20 acquisitions, ultrasound: 25W, 60 second).

Results, Discussion, and Conclusions

Figure 3 shows the phase difference between the two navigators for the first acquisition in the breast. The RF JL
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Figure 3. Phase Difference between first and Figure 5. PRF Temperature change of single Figure 6. Gelatin PRF temperature for
second navigator for the first image acquisition voxel of aqueous tissue near the center of the uncorrected (top) and corrected

of in vivo breast. The dashed black line is the breast. (bottom)

mean phase variation after removing the

average phase difference.

Proc. Intl. Soc. Mag. Reson. Med. 23 (2015) 0038.



