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TARGET AUDIENCE: Researchers interested in diabetes and heart failure

PURPOSE: Diabetes patients have a high risk for cardiovascular diseases. Metabolic adaptations in the diabetic heart are proposed as an important contributor to
the development of heart failure in diabetes patients. However, data in this field largely originates from ex vivo rodent or cross-sectional human studies, which do
not allow studying the time course of changes in cardiac metabolism in relation to the decline in cardiac function. We aim to investigate to what extent changes in
cardiac metabolic flexibility, lipid accumulation, and energy status predict the longitudinal development of heart failure in non-diabetic and diabetic mice.

METHODS: Animals. Pressure overload heart failure was induced in non-diabetic db/+ and diabetic db/db C57BL/KsJ mice (n=3-10 per group) via transverse
aortic constriction (TAC) surgery. Cine MRI, "H MRS, *'P MRS, and PET were performed at baseline, and at 1, 5, and 12 weeks (wk) after TAC.

MRI/MRS. All measurements were performed using cardiac triggering and respiratory gating, on a 9.4T horizontal bore MR scanner (Bruker Biospin). For MRI
and '"H MRS, a 35-mm quadrature birdcage coil (Bruker Biospin) was used. For *'P MRS, a 54-mm linear birdcage coil (Rapid Biomedical) and an actively
decoupled surface coil with a diameter of 15 mm were used for transmission and reception, respectively.

Cine MRI. FLASH sequence was used to acquire cine images for 5-6 contiguous short axis and 2 long axis slices (thickness: 1 mm). TR/TE: 7/1.8 ms, a: 15°,
matrix: 192x192, FOV: 30x30 mm?, frames/cardiac cycle: 15-18, NSA: 6. Left ventricular (LV) lumen was semi-automatically segmented using CAAS MRV 2.0
(Pie Medical) to calculate LV mass and ejection fraction (EF).

"H MRS. Localized '"H MR spectra were acquired during diastole in the interventricular septum (1x2x2 mm? voxel) using the PRESS sequence, with CHESS
water suppression, as described previously”. TR: ~2s, TE: 9.1ms, 0.41 ms 90° Hermite-shaped pulse, 0.9 ms 180° Mao-type pulses, 256 scans. Spectral analysis
was performed using AMARES in jMRUI Cardiac lipid levels were calculated from the lipid-CH, signal relative to the unsuppressed water peak.

3P MRS. *'P MRS was performed using the image selected in vivo spectroscopy (ISIS) sequence on a voxel of typically ~6x6x6 mm® covering the left ventricle,
at the end of diastolic phase, as described previously®. TR: ~2s, 1.2 ms sinc-shaped excitation pulse, 6.25 ms adiabatic hyperbolic secant inversion pulses, 96 ISIS
cycles (768 scans). Localized shimming was performed on the 'H signal using an 11x11x11 mm® PRESS voxel covering the sensitive area of the surface coil.
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diabetic mice had lower myocardial FDG uptake (Fig. 1C), higher myocardial
lipid content, and lower myocardial cardiac energy status (Fig. 1D; Fig. 3A-B), Figure 1. (A) LV mass, (B) ejection fraction, (C) myocardial FDG uptake,
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